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Kurzfassung

Durch die Fortschritte in der Molekularbiologie und Informatik sind in den letzten Jahren com-
puterunterstützte Verfahren auch bei der Erforschung neuer Arzneimittel immer beliebter gewor-
den. Virtual Screening ist ein solches Verfahren, bei dem 3D Pharmacophorefilter angewendet
werden, um eine Vielzahl von chemischen Mitteln virtuell daraufhin zu überprüfen, ob sie eine
gewisse biologische Aktivität im menschlichen Körper hervorrufen. Die Gefahr dabei ist aller-
dings, dass unerwünschte Nebenwirkungen zu wenig in Betracht gezogen werden. Moderne
Ansätze lösen das Problem, indem sie chemische Substanzen auf mehrere biologische Aktivi-
täten überprüfen. Dieses Verfahren, das “Activity Profiling“ genannt wird, erschwert allerdings
die Analyse der Testergebnisse, da die Ergebnismenge drastisch ansteigt.

Diese Masterarbeit beschäftigt sich mit der Visualisierung von solchen Ergebnissen.
Zunächst werden die Quelldaten und Ergebnisdaten des Virtual Screening Prozesses im Rahmen
aktueller Screeningverfahren beschrieben. Dabei wird vor allem der Vergleich zu Verfahren,
bei denen chemische Mittel reell getestet werden, betrachtet und die Möglichkeit, virtuelles
Screening mit dem reellen Ansatz zu kombinieren, erläutert. Visualisierung stellt einen weiteren
Schwerpunkt dieser Arbeit dar. Diverse Visualisierungstechniken und deren Anwendbarkeit wer-
den speziell bei dieser Problemstellung genauer unter die Lupe genommen. Außerdem werden
Anwendungen, die sich bereits mit dieser Problemstellung auseinandergesetzt haben, analysiert,
um Vor- und Nachteile der jeweiligen Anwendung zu ermitteln. Usability wird dabei durch
Benutzerfeedback beurteilt.

Aufbauend auf die gewonnenen Erkenntnisse wird im Rahmen dieser Masterarbeit eine Soft-
wareanwendung entwickelt, die einerseits Aktivitätsprofile visuell darstellt und andererseits eine
effektive Benutzerinteraktion ermöglicht. Die graphische Darstellung ist mittels OpenGL imple-
mentiert, um die Hardwarebeschleuningung durch die Grafikkarte auszunützen. Da der Screen-
ing Prozess sehr lange dauern kann, ist es erforderlich, einen Weg zu finden, um diesen Prozess
zu beschleunigen. Aus diesem Grund wird eine Schnittstelle zum Screening Prozess zur Verfü-
gung gestellt, die es möglich macht, den Screening-Client beispielsweise gegen eine effizienter
Lösung oder eine verteilte Anwendung auszutauschen. Eine weitere Eigenschaft der Applikation
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im Zusammenhang mit dem Screening Prozess ist, dass der Benutzer/die Benutzerin stets über
den Status des Prozesses und über neue Ergebnisse informiert wird. Die Ergebnisse werden unter
anderem in einer Heatmap, die zusätzlich mit Höheninformationen ausgestattet ist, dargetstellt.
Die Heatmap erlaubt dem Benutzer/der Benutzerin Ergebnisse, die nicht von Interesse sind, zu
filtern. Um eine bessere Einsicht in diese komplexen Daten zu ermöglich, bietet die Anwen-
dung mehrere Sichten (Views), die durch moderne Linking and Brushing Techniken miteinander
gekoppelt sind.
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Abstract

After recent advances in molecular biology and informatics computer-based techniques got more
and more popular in pharmaceutical research. Virtual screening using 3D pharmacophore filters
has become a modern approach in computational drug discovery that is used to filter chemical
libraries according to their simulated affinity to a specific biological target. Typically, several
molecules are tested against a single model in order to predict, whether they show a specific bio-
logical activity. In the case of screening against a single biological target, the main risk in drug
development, off-target effects (or side effects) are often neglected. Therefore, recent approaches
screen molecules against several targets (“activity profiling”). However, when screening of sev-
eral thousand compounds is performed against several targets, the resulting amount of data is
huge and difficult to analyze.

The current work focuses on the visualization of the filtering results, i.e. the affinity of several
molecules against several targets. The data source used for virtual screening as well as the results
are first described and analyzed in the context of existing screening methods. Additionally the
relationship between virtual screening and large-scale biological testing, where large libraries of
chemicals are physically screened against a biological target is discussed. It is also described
how these techniques may be combined in visualizing results. Different established visualization
methods are described and compared. Already existing visualization techniques are analyzed
and discussed in terms of their applicability to this specific problem, especially focusing on the
advantages and disadvantages of each approach. Usability is evaluated based on the feedback of
members of the Institute of Pharmacy of the Leopold-Franzens-University of Innsbruck.

Based on these insights, a novel visualization program is developed that on the one hand
displays activity profiles, and on the other hand allows for user-effective interactive exploration
of the displayed results. The visualization is implemented in OpenGL, taking advantage of
hardware-accelerated real-time rendering, and providing an interface to the pharmacophore
screening process. This very time consuming process makes it necessary to distribute the
screening and permanently display the status of available and new incoming data. The resulting
activity profiles are displayed in a heat map including height information allowing the user to set
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filters for the target affinities in a comfortable way, which are separated into different adaptable
categories, like therapeutical or pharmacological class, medical indication, and target type.
Furthermore, the program provides other views including a selectable list of target-molecule
matches, which gives an overview of the selected hits and a detailed view showing the mapping
details of a specific target with respect to a molecule. These views focus on user interaction,
which is integrated using linking and brushing techniques and allows the user to explore the
connection between targets and molecules.
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Chapter 1

Introduction

1.1 Problem Domain

Improvements in informatics have induced many research fields to use computer-
based methods for their purposes and so does modern drug research. Computer
programs are used to virtually screen molecules against biological targets to find the
ones which cause a specific biological activity in the human body to cure diseases.

A common problem of drug development are side effects and toxicity, which are
caused by molecules triggering biological activities not only on desired targets, but
also on others. To find and remove chemicals with side effects chemists apply phar-
macological profiling, where a drug candidate is screened against multiple targets.

Nowadays, the idea of combining the current screening protocol with pharma-
cological profiling to screen multiple molecules against multiple targets becomes
popular. This is called “Activity Profiling”. However, analyzing the result set of
screening thousands of molecules against several targets is a becoming challenging
due to the large amount of data to be processed.

The Vienna University of Technology and Inte:ligand, a company which devel-
ops computer-aided software solutions for drug research, have together developed
two applications dealing with the problem of visualizing and filtering of activity pro-
filing results. Both tools are using multiple view systems combined with linking and
brushing for an interactive visualization of activity profiles. The analysis of those
programs has revealed that further work can significantly improve the visualization
approaches for activity profiling.

1



CHAPTER 1. INTRODUCTION 2

1.2 Suggested Approach

The development of a novel application which takes advantage of the strengths of
previous approaches is also part of this work. Especially the visualization of activity
profiles of Hitvis [8] by using an interactive map with heat- and height information
is taken as a starting point. However, testing and evaluating Hitvis has shown that
there are significant shortcomings of the map which are addressed in this work.

The fact that a huge amount of data has to be displayed and that the displayed
items often have to be updated through filtering operations, requires hardware accel-
eration for rendering. Therefore the visualization is implemented in OpenGL which
on the one hand takes advantage of hardware-acceleration, and on the other hand
allows for a 3D implementation of the map. Furthermore, the new application is
written in Java which provides platform independence.

1.3 Thesis Outline

After a short introduction into the problem domain and the suggested solution in
chapter 1, the following chapter, chapter 2, describes virtual screening and intro-
duces into modern drug discovery techniques. The problem of side effects and tox-
icity and why Activity Profiling is an approach to address this problem is the topic
of chapter 3. Chapter 4 delineates the principles of visualization and shows state
of the art visualization taxonomies. Furthermore, this chapter describes the differ-
ences between Scientific Visualization and Information Visualization. The latter is
covered in more detail in chapter 5, where two visualization methods, which are
used in the developed application, are depicted. Chapter 6 describes Multiple View
Systems and how they can be used in an effective manner. Linking and Brushing,
which is often used in multiple view systems, is mentioned in chapter 6 and cov-
ered in more detail in chapter 7, where different brushing techniques are discussed.
chapter 8 provides an overview of state of the art tools for the visualization of n:m
drug target interactions. Together with the members of Institute of Pharmacy of
the Leopold-Franzens-University of Innsbruck these tools have been discussed and
evaluated. The results of this evaluation are also described in chapter 8. Chapter 9
is about the application developed as part of this thesis and describes important as-
pects of the program. Chapter 10 provides a summary of this work and indicates
remaining issues.



Chapter 2

Virtual Screening

Since molecular biology and informatics have made big advances over the last years,
pharmaceutical researchers make more and more use of computational techniques.
Virtual screening [57, 21] is such a technique and was introduced in the 1970s.
The main goal of virtual screening is to virtually screen large chemical libraries
for compounds that fit to targets of known structure. Virtually means to screen
by using computer programs, and the chemists experimentally test only those that
are predicted to bind well. This new screening method was a hot prospect, but
insufficient software support and the necessity to determine receptor structures to
atomic resolution and catalog them, avoided virtual screening getting popular at
that time. Chemists preferred traditional screening techniques, where large libraries
of chemicals are physically screened against a biological target. However, virtual
screening is popular nowadays and is predicted to be a very important part of drug
research in the future.

2.1 Virtual vs. Traditional Screening

In the past chemists could only synthesize a few hundred or probably fewer com-
pounds in a year. Traditional screening methods have increased this number to
103-104 compounds a year labor work [57]. To synthesize millions or billions of
compounds computational chemists take advantage of computer programs to auto-
matically evaluate very large libraries of compounds (virtual screening). However,
virtual screening is not replacing traditional screening. Virtual screening is used to
reduce the number of possible molecules that fit to a certain target, but the remaining
molecules have to be screened physically. A typical pharmaceutical project time-

3



CHAPTER 2. VIRTUAL SCREENING 4

line, is shown in Figure 2.1.

Figure 2.1: A typical pharmaceutical project timeline. The stages of the project
are shown below the arrow. Contributions which may be made by the
computational chemistry group are shown above [57].

The stages of the project are shown below the arrow. First a target is selected and
an assay is developed. The next stage is high-throughput screening (HTS), where a
huge amount of molecules are experimentally screened against a target. Afterwards,
hits found by this process are confirmed. In the last two stages the target structure
is obtained and the developed candidate is taken forward for further tests.

Contributions wich may be made by the computational chemistry group are
shown above the arrow. Common contributions are:

• database clustering, where molecules are grouped based on similarity.

• similarity analysis, where the structure of molecules is used to calculate a
wide variety of descriptors.

• quantitative structure-activity relationship (QSAR), which is a process
that quantitively correlates the structure of molecules with biological activ-
ity.
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• pharmacophores, which are congeries of chemical features a molecule must
have to trigger biological activity on a target.

• structure-based design, where pharmacophores are created based on struc-
tural information of a drug target and molecules interacting with the target.

2.2 Limiting the search space

The total number of molecules in the virtual chemistry space is about 10100 [57].
There are some assumptions to limit the search space. A basic assumption is to
focus on libraries that are more practical. Molecules, which are too large or too
lipophilic are not associated with drugs [57]. Chemical libraries containing such
molecules can be excluded from the search space. Cheap libraries with molecules
that are often used in drugs are preferred instead. There are some other reasons,
which make many of the molecules in a virtual library impractical. For example
certain combinations of functional groups are not synthetically compatible or some
combinations of functional groups are quite rare to find in drugs. Such molecules
can also be excluded from the search space. Figure 2.2 shows, in schematic form,
some of the different reasons for eliminating compounds. Another basic assumption
is to avoid to fully enumerate the virtual library. There are some computational tech-
niques like similarity clustering, which is described in section 2.3, and figure 2.3, to
avoid full enumeration.

2.3 Current Practices in Virtual Screening

In the following some state of the art techniques in virtual screening as well as
the current situation of virtual screening is described using statistical information
provided by Walters [57].

Commercial software:
Commercial software in pharmaceutical drug research is driven by a few software
vendors [55, 25, 23, 44, 29] and is widely used by computational chemists nowa-
days. Altough the software is valuable in a wide range of drug design applications,
it should be mentioned that there are still certain limitations when working with
large libraries of molecules. Many of the software tools get very slow and unstable



CHAPTER 2. VIRTUAL SCREENING 6

Figure 2.2: A molecule library and three specific molecules within the library that
may be rejected for various reasons [57].

when loading large virtual libraries. Additionally to the limitations in software
engineering, algorithms used by the commercial software are relatively primitive
and improvable [57].

How fast is fast?
When comparing different virtual screening methods an important aspect is speed.
If one molecule per minute is processed, screening parallel with 32 processors
would mean that 1̃.4 million compounds can be screened in a month [57]. This is
nowhere near the size of typical libraries. Therefore virtual screening has generally
been used to study a single molecule or lead class1.

2D similarity
The use of 2D-similarity methods can greatly speed up processing of a virtual
library compared to traditional screening methods. The 2D representation of a
molecule allows to calculate a wide variety of descriptors [53]. Most of them can
be calculated very fast, which makes it possible to process hundreds of thousands
of structures in an hour. 2D similarity methods are so rapid that they are often used
to select compounds from a virtual library that are similar to an existing lead. This
is shown in Figure 2.3.

1A set of molecules which have a common chemical property.
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The lead molecule is in the middle. The compounds araound the lead illutrate the

Figure 2.3: Identifying similar compounds using simple 2D methods [57].

molecule library, where molecules that are similar to the lead are searched for.
Clustering or ’pooling’ reagents
Clustering or ’pooling’ reagents2 based on similarity is another approach to
enhance the speed of processing of a virtual library. It is important to avoid to fully
enumerate the virtual library. This can be achieved by clustering building blocks,
based on their similarity. After clustering only one representative member of each
family in the library needs to be evaluated. This can dramatically reduce the number
of compounds. Figure 2.4 shows how reagent pooling might work. The reagent
in the middle is used for screening and is representing all reagents around it.
Evolutionary methods
Evolutionary algorithms are metaheuristic optimization algorithms for searches
based on the principles of biological evolution. In genetic algorithms, which
are related to evolutionary algorithms, these principles are selection, crossover,
and mutation. At the beginning of the process an initial population is generated.
Typically this is done randomly. After evaluating the fitness of each individual,

2A reagent or reactent is a substance consumed during a chemical reaction.
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Figure 2.4: Reagent pooling [57].

some individuals are selected, based on their fitness (selection phase). To generate
a second generation population, in the next step (crossover phase) some of the
selected parents are pared and genetic material is exchanged. In the mutation phase
a small fraction of the population undergoes point mutation, which increases the
gene pool. This is important to avoid being trapped in local minima. In Figure 2.5
the flowchart of a genetic algorithm is shown. Some evolutionary methods like

Figure 2.5: Flowchart of a genetic algorithm [57].

genetic algorithms are used in some drug design applications [57] to focus on a
smaller number of compounds. The main advantages of these methods are that they
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are rapid and easy to implement, but there are also some drawbacks. An important
one is that the evolutionary algorithms are non-deterministic, which means that
each run could produce a different solution. Additionally, the solution found by the
algorithm may not be the best solution anyway.

Multi-conformer databases
To approach molecular flexibility databases can be pre-calculated
where the conformers need only be generated once, stored and ac-
cessed when needed. Considering the CPU time needed to eval-
uate a 3D virtual library, this method can save a lot of time.

2.4 Pharmacophore-based Virtual Screening

The official definition of a pharmacophore elaborated by a working party of the
International Union of Pure and Applied Chemistry (IUPAC) and published 1998 is:

A pharmacophore is the ensemble of steric and electronic features that is
necessary to ensure the optimal supramolecular interactions with a specific
biological target structure and to trigger (or to block) its biological response.

This means a pharmacophore does not represent something real like a molecule
or a functional group, but an abstract concept that describes molecular features
necessary to trigger a biological response of a specific target. Based on these
abstract models virtual screening can be applied by screening virtual libraries
against the created pharmacophores. Molecules matching a specific pharma-
cophore are expected to trigger biological activity at the receptor site. A typical
pharmacophore-based virtual screening workflow is depicted in Figure 2.6. First,
the 3D structure of a target is used together with the 3D structure of a set of
ligands to create pharmacophore models. Afterwards, the 3D database is searched
until known ligands are found. If compounds are found that are not known as
ligands, molecules having a structure that fits the model are designed. After a
final optimization process new leads are found and the virtual screening process is
finished.
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In the following two different approaches for pharmacophore screening are
described.

Figure 2.6: A typical pharmacophore-based virtual screening workflow [35].

Ligand-based vs. structure-based pharmacophore screening
There are two different types of pharmacophore based virtual screening (phar-
macophore screening). One is to start from a set of ligands3 that are known
to bind to the same target in a comparable way, which is called ligand-based
pharmacophore screening. The other is to investigate the geometry of the target
and the bound ligand if its structure is available. This is called structure-based
pharmacophore screening. The relationship between these two methods is shown in
Figure 2.7. A pharmacophore, which is shown in the middle, is needed for virtual
screening. On the left of the pharmacophore the ligand-based approach is depicted.
Multiple ligands which are known to trigger activity are put together to create the

3A ligand is a molecule that is able to bind to and form a complex with a protein to trigger a
biological activity.
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pharmacophore. On the right of the pharmacophore the structure-based approach
is shown. The blue, meandering object represents a protein. The ligand which is
known to fit to this target is inside the yellow box in the center of the protein. The
pharmacophore is created by the binding information of the ligand with the protein.
Although there are some approaches for ligand-based screening, this work will

Figure 2.7: The relationship between ligand-based and structure-based pharma-
cophore screening [13].

focus on structure-based screening, which is more efficient [62].

3-D structure generation
In the 1940s SAR (structure-activity relationship) considerations enabled the
construction of 2-D model structures. X-ray analysis and conformational chemistry
made 3-D models possible in the 1960s. For structure-based pharmacophore
screening it is necessary that the structural data to be screened is available in 3-D
form.

The 3-D structure can be created by computer programs, which use 2-D con-
nectivity files as input. Such files contain atom and bonding descriptions for each
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molecule and can be in the form of SMILES4 [17, 3, 59] strings, SLN 5 [5] strings,
and 2-D SD 6 [15] connection tables. These programs do the conversion from
2-D to 3-D by using a mixture of rules (linking atom hybridization bond lengths,
bond angles and non-bonded forces), pre-calculated 3-D fragment databases, and
distance geometry techniques.

Pharmacophore atom-typing
To screen molecules against pharmacophores it is necessary to specify the func-
tional properties of the molecules. The most common functional properties are
hydrophobe, negative ionizable, positive ionizable, hydrogen bond donor and
hydrogen bond acceptor [64]. Figure 2.8 shows pharmacophoric elements created
with LigandScout [64, 60, 61] in 3D and Figure 2.9 in 2D.
The chemical feature definitions of LigandScout are described in the following:

Figure 2.8: Pharmacophoric elements of a molecule in the 3D-view of Ligand-
Scout. Hydrophobic Interactions (yellow sphere), Hydrogen Bond
Donor (green arrows) and Hydrogen Bond Acceptor (red arrows).

4Simplified Molecular Input Line Entry Specification
5SYBYL Line Notation. SYBYL is a molecular modeling program developed by Tripos [55].
6Structure Data
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Figure 2.9: Pharmacophoric elements of a molecule in the 2D-view of Ligand-
Scout. Hydrophobic Interactions (yellow circles), Hydrogen Bond
Donor (green arrows) and Hydrogen Bond Acceptor (red arrows).

• Hydrogen Bonding
Hydrogen bonding occurs when a covalently bound7 hydrogen with a posi-
tive partial charge interacts with another atom with a negative partial charge
[40]. This typically happens when the partially positively charged hydrogen
atom is positioned between partially negatively charged oxygen and nitrogen
atoms [62]. The element of the interaction, containing the hydrogen, is called
hydrogen-bond donor (e.g. NH or OH) and the opposite partner is a hydrogen-
bond acceptor, because it possesses a partially negatively charged atom (N,
O) [13].

• Ionic Interaction
Another commonly found interaction type appears when areas of the ligand,
such as charged groups or atoms, bind to areas of the protein of opposite
charge [13]. Positive ionizable areas appear if chemical features are pro-
tonated at a physiological pH, whereas negative ionizable areas are atoms
or groups of atoms that are likely to be deprotonated at physiological pH

7A covalent binding is an atom binding.
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[13, 62].

• Hydrophobic Interaction
This kind of interaction only takes place when hydrophobic residues of amino
acids are close to lipophilic groups of the ligand [13]. A hydrophobic in-
teraction has no directional constraint like hydrogen-bond interactions. An
exclusion is given if an aromatic ring8 of the ligand interacts with an aromatic
ring of the protein [12].

To create pharmacophores with such features LigandScout uses a structure-based
approach, where the target and ligand informations are loaded from a PDB9

[9, 10, 11, 52] file and chemical features are created through applying chemical
substructure patterns to the ligands [64].

8Aromatic rings are ring-shaped organic compounds.
9Protein Data Bank
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Activity Profiling

When virtually screening libraries against a model of target the goal is to find
molecules fitting to that target. This fitting of the molecule triggers a biologic
response, which should be useful in the efficient and safe treatment of a certain
disease. Unfortunately molecules often fit to more than a single target, which can
cause side-effects and toxicity.

Side-effects and Toxicity
94% of all drugs widthdrawn from the market between 1992-2002 are caused by
side-effects and toxicity as shown in Figure 3.1 [45]. Therefore, the modeling of
all relevant targets responsible for drug action and side-effects is desired but not
provided by current screening protocols.

Figure 3.1: Drugs widthdrawn from the market between 1992-2002 [34].

15
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Current Screening Protocol
In a typical current screening protocol, shown in Figure 3.2, a molecule library with
thousands of molecules is screened against a single biological target. This kind
of screening does not show side-effects and toxicity. Therefore, pharmacological
profiling is applied to drug candidates.

Figure 3.2: Current Screening Protocol.

Pharmacological Profiling
In Figure 3.3 pharmacological profiling is depicted, where a molecule is screened
against one or more target-sets. Pharmacological profiling shows side-effects and
toxicity of a drug candidate and is applied late in the research process of drugs.
A technique which combines the current screening protocol with pharmacological
profiling is desired. This is achieved by activity profiling [50].

Activity Profiling
Activity profiling is the combination of the two methods described above.
Figure 3.4 illustrates the idea of activity profiling.
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Figure 3.3: Pharmacological Profiling.

Figure 3.4: Activity Profiling.
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Steindl et al. [51] describes five aspects of activity profiling which are:

• addressing the selectivity1 issue in drug design

• identifying potential side-effects, toxicity or metabolic pathways2 early on in
the research process

• screening against databases of known multiple therapeutic targets to discover
new applications for a known compound or marketed drug

• searching for a potential mode of action of acquired compounds (parallel
screening)

• designing privileged structure fitting to desired targets, while minimizing the
probability of binding to any of the other targets (library profiling)

In the following parallel screening, which is an im-
portant part of activity profiling, is described.
Parallel Screening Parallel screening is the simultaneous screening of one or
more molecules against a set of pharmacophores, which can represent different
targets. The aim is the fast in-silico3 determination of the biological activity profile
of a molecule in order to speed up the time and cost-intensive drug discovery
development process and increase its efficiency [50].

The successful application of the parallel screening concept is shown in an ex-
periment by Steindl et al. [50], where 89 known HIV protease inhibitors and 85
druglike inactive compounds were screened against a total of 81 HIV protease in-
hibitor pharmacophore models. The results, which were displayed in the heatmap-
mode of Pipeline Pilot4 are shown in Figure 3.5. Molecules are listed on the y-axis,
pharmacophores on the x-axis. The color coding indicates the score of the com-
pound, with an encoding from red boxes for high score compounds to light blue
boxes for low score compounds and black boxes where no compounds are matching
to the corresponding pharmacophore.

1In pharmacology selectivity is the preference of a drug for one mechanism of action over others
that cause side effects.

2A metabolic pathway is a series of chemical reactions occuring within a cell.
3In-silico is an expression used to mean “performed on computer or via computer simulation“.
4 Pipeline Pilot is a software application developed by SciTegic Inc and Accelrys Inc [26, 25].
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Figure 3.5: Results of a parallel screening example shown in a heatmap with
molecules on the y-axis, pharmacophores on the x-axis and color cod-
ing from red boxes for high score compounds to light blue boxes for
low score compounds, black boxes where no compounds are matching
to the corresponding pharmacophore [50].



Chapter 4

Visualization

Visualization is the use of computer-supported, interactive, visual representations
of data to amplify cognition [14].

This definition results from the fact, that humans have remarkable
perceptual abilities like scanning, discovering, remembering images
rapidly and automatically detecting patterns and changes in size, colour,
shape, movement or texture. So, visualization helps us to gain in-
sight into data and to make (better) decisions resulting from this insight.

According to Ware [58] some of the advantages of visualization are:

• Visualization provides an ability to comprehend huge amounts of data.

• Visualization allows the perception of emergent properties that were not an-
ticipated.

• Visualization often enables problems with the data itself to become immedi-
ately apparent.

• Visualization facilitates understanding of both, large-scale and small-scale
features of the data.

• Visualization facilitates hypothesis formation.

20
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Ware [58] also defines four basic stages in the process of data visualization:

1. The collection and storage of data itself.

2. The preprocessing designed to transform the data into something we can un-
derstand.

3. The display hardware and the graphics algorithms that produce an image on
the screen.

4. The human perceptual and cognitive system.

A schematic diagram of the visualization process a number of feedback loops is
shown in Figure 4.1. There are three feedback loops shown in Figure 4.1. The

Figure 4.1: A schematic diagram of the visualization process [58].

longest one is data gathering, where a data seeker may gather more data to follow
up on an interesting lead. The data gathering loop is closely coupled with both,
the physical environment and the social environment. The physical environment is
a source of data and the social environment designates what is collected and how
it is interpreted. The second feedback loop is data exploration, where the human
analyst may change the transformation, if he or she feels that the data subjected by a
certain transformation could give up its meaning. The last one is data manipulation
where the analyst may display different aspects of the data through an interactive
visualization.
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4.1 Scientific- vs. Information Visualization

In the past the lack of graphics power and CPU speed often limited the usefulness of
computer-aided visualization of data. Since computers got more and more powerful,
the utilization of computer graphics in science and other fields has increased a lot.
Based on the data domain we can classify visualization into:

• Scientific Visualization

Scientific visualization is the use of visual representations of scientific data,
typically physically based, to amplify cognition [14, 42].

Scientific data could be the human body, the earth, molecules, or other. The
main goal of scientific visualization is to analyze such data (e.g. medical
monitoring data, medical image data, or GIS-data).

• Information Visualization

Information visualization is the use of visual representations of abstract, non-
physically based data to amplify cognition [14, 42]. Some information visu-
alization techniques are described in chapter 5.

4.2 Model-based Visualization Taxonomy

The classification above has its seeds in the early days of the evolution of visualiza-
tion and is dividing the entire research area into distinct parts. It appears that these
groups are not completely disjoint, but are overlapping in some aspects.

Tory and Möller [54] have introduced a classification scheme that organizes
visualization techniques in a new way. The taxonomy is based on characteristics
of models of the data rather than on characteristics of the data itself. Therefore,
it is called a model-based visualization taxonomy. Design models are classified
according to two criteria. First, whether the design model is discrete or continuous
and second, how much the display attributes are given or chosen. Figure 4.2 shows
the taxonomy structure of Tory and Möller [54]. According to Tory and Möller
scientific visualization is placed on the top left area and information visualization
on the bottom right. Middle areas cannot be classified to any of the both with
assurance, which means that in the middle areas scientific visualization and
information visualization are overlapping.
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Figure 4.2: High-level visualization taxonomy, illustrated by examples. Design
models are classified based on whether they are discrete or continu-
ous and by how much the algorithm designer chooses display attributes
like spatialization, timing, colour and transparency [54].

4.3 Goals of Visualization Techniques

Beside the classifications by the data domain and the design model, Keim [31] de-
fines three different approaches of how visualization techniques can be used.

• Explorative Analysis

At the beginning there is no hypothesis about the data. The user performs in-
teractive and usually undirected searches for structures, trends, etc. to explore
relations between data attributes and to gain insight into the data. The aim is
to get a visualization, which provides hypothesis about the data.

• Confirmative Analysis

Starting with hypothesis about the data, the goal is a visualization, which
allows the confirmation or rejection of the hypothesis. Therefore, the user
examines the data in a goal-oriented manner.

• Presentation

Presentation is a widely used visualization purpose and can be found in vari-
ous fields. The facts to be presented are fixed at the beginning and the user has
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to choose an appropriate presentation technique as a post-processing step. The
result should be a high-quality visualization of the data presenting the facts,
whereby interaction is not important. The purpose is not to find relations, but
to present them in the best way.
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Information Visualization

Research of the effective visualization of static presentations has been performed
for a long time. The visualization of interactive visual representations has become
more interesting after recent advances of computer hardware performance, espe-
cially after improvements in graphics power. As mentioned above, we differentiate
between scientific visualization and information visualization. The goal of scientific
visualization is to make important spatial structures visible, whereas the goal of in-
formation visualization is to find adequate and comprehensible visual metaphors for
a particular problem and to provide optimal interaction possibilities. This includes
the mapping of non-spatial data to spatial ones. Many visualization techniques are
introduced and analyzed by researchers in this area. Some of them, which are rele-
vant in the context of the visualization of n:m drug target interactions are described
in the following. However, multiple view visualization, where at least two differ-
ent views of the same data are showing different aspects or attributes of the data, is
analyzed in chapter 6 in detail.

5.1 Heat Map

A heat map is the visual representation of data in 2D, where the color of a data item
encodes a specific attribute of the data. The location of a data item in the 2D map
results from one or more attributes of the data and should be intuitive to the user.
Heat maps are widely used in molecular biology. An example of a gene expression
during the yeast cell cycle is depicted in Figure 5.1. Genes correspond to the rows,
and the time points of each experiment are the columns. The ratio of induction is
shown for each gene such that the magnitude is indicated by the intensity of the

25
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Figure 5.1: Gene expression during the yeast cell cycle [49].
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colors displayed. If the color is black, then the ratio of control to experimental
cDNA1 is equal 1. Red indicates an increase in mRNA2 abundance, whereas green
indicates a decrease in abundance.

5.2 Height Map

Height maps are fairly similar to heat maps, while the visualization is 3D instead of
2D. The third dimension, the height (the z-axis) is used instead of color to encode a
specific attribute of the data. Just as in a heat map, the location of a data element of
the height map is determined by at least one attribute of the data. Height maps are
commonly used in GIS’3, where they are called DEM4. Figure 5.2 shows a height
map rendered with Anim8or [4], which is a freeware OpenGL5 based 3D modeling
and animation program. The Figure shows a mountainous terrain.

Figure 5.2: A height map rendered with Anim8or [4].

1Complementary Deoxyribonucleic acid
2Messenger Ribonucleic Acid
3Geographic Information System
4Digital Elevation Model
5Open Graphics Library is a standard defining an API for writing applications that profuce 2D

and 3D computer graphics.
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5.3 Clustering

A common issue of information visualization is that the amount of data to be
visualized is huge. An effective technique to let the user analyze and discover
interesting patterns in large datasets is to group data items which are similar in a
particular property, which is called clustering [18, 24, 16]. A modern clustering
approach is hierarchical clustering [30]. This approach finds pairs with the most
similar data elements, and iteratively builds a hierarchy by pairing data items or
existing clusters that are most similar. A powerful tool which makes use of this
technique is HCE6 [19] and was developed by Seo and Shneiderman [46]. HCE
addresses a common issue of clustering, which is the determination of the amount
of clusters. Previously there were two approaches for this issue. Either letting the
users determine the number of clusters as an input or automatically determining
them. The first one is often difficult to apply, because users often do not know
the right number beforehand. The latter has the disadvantage that users cannot
control the clustering process. HCE avoids this dilemma by applying the clustering
algorithm without a predetermined number of clusters, and allows for user-effective
interactive control of the grouping afterwards. Figure 5.3 shows HCE with its
different views, which are described in the following.

Dendrogram View
Dendograms are trees often used to show the arrangement of clusters. The tree has
joining points whose distance from the root indicates the similarity of subtrees.
Highly similar nodes or subtrees have joining points that are farther from the root
[46]. The “Minimum Similarity Bar” above the dendrogram of Figure 5.3 allows
for an interactive change of the clusters.

Detail Views
The dataset is coupled with the detail views which lets the user easily find and
examine high-level patterns and hot spots.

Scatterplots
The 2D scatterplots7 are bi-directionally linked to the Dendrogram View and
provide a different perspective of the data set.

6Hierarchical Clustering Explorer
7A scatterplot is a chart that uses cartesian coordinates to display values for two variables.
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Profile Search
A profile search, where the user can easily identify genes with a certain temporal
pattern is provided by a parallel coordinates8 chart.

Figure 5.3: HCE - Hierarchical Clustering Explorer [19].

8Parallel coordinates is a common way of studying high-dimensional geometry. To show a set of
points in an n-dimensional space, a backdrop is drawn consisting of n parallel lines, typically vertical
and equally spaced. A point in n-dimensional space is represented as a polyline with vertices on the
parallel axes. The position of the vertex on the i-th axis corresponds to the i-th coordinate of the
point [27, 28].
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Multiple Views

Displaying data in such a form that the user can easily extract the information
needed, is a difficult task. For different use cases the user often needs different
details of the shown data. Putting all of the needed information into a single view
often ends up with a view, which is not optimal for any of the use cases.

Multiple view visualization is a commonly used approach to overcome this
problem.

6.1 Definition

Baldonado [7] defines a multiple view system as following:

A multiple view system uses two or more distinct views to support the investi-
gation of a single conceptual entity.

A view is a set of data and the specification of how to display that data.
Views are distinct if they differ in their data or in the visual representation of that
data.

30
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6.2 Drawbacks

The main drawbacks of multiple views are the additional complexity and the ad-
ditional system requirements resulting from displaying multiple views. The system
gets more complex for the user, because of the additional time and effort to learn the
system and switch between the views and contexts. The additional system require-
ments are the resources needed to render the additional views and display space
requirements for the additional display elements. There are three dimensions for
the development of multiple view systems, which are described in the following
section.

6.3 Dimensions

The development of multiple view systems consist of three dimensions: selection,
presentation, and interaction [7].

6.3.1 Selection

In the selection phase the designer should identify a set of needed and useful views,
which are distinct and can be combined for displaying data of a given task.

6.3.2 Presentation

After determining views to display, it has to be decided how to display them. For
example, the designer has to choose between displaying the views sequentially or all
at once. Another important decision is the visual presentation of the data (bar-charts,
scatterplots, tabular,...).

6.3.3 Interaction

In the last phase the interaction methods have to be decided. Each view may
have its own interface affordances for navigating through the data, selecting data,
etc. In multiple view systems usually these affordances are tied together so that
actions in one view are automatically propagated to other views. A common
interaction technique is navigational slaving [7, 36], where movements in one view
are propagated to other views. Another interaction method is linking and brushing
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[22, 33, 36], where highlighting data in a view by user input (e.g. clicking on a
visual object) results in highlighting that data in all views. In chapter 7 Linking and
brushing is described in more detail.

In the next two sections rules for a successful implementation of these dimensions
are described.

6.4 Rules for Selecting Views

In the following some rules for selecting views, which are mentioned by Baldonado
et al. [7] are described.

6.4.1 Diversity

If there is a diversity of attributes, models, user profiles, levels of abstraction or
genres multiple views should be preferred. Using a single view approach in this case
often leads to a least-common-denominator view, that is insufficient for any needs.
Figure 6.1 depicts a system that exemplifies the use of multiple views for data with
different attributes and different levels of abstraction [39]. This tool shows legal
information using the following views: query, query results in textual form, query
results in a graphical visualization, and, for the selected case, overview, headnotes,
and decision text, all in textual form [7].

6.4.2 Complementary

If there are correlations and/or disparities in the data, the user has to mentally extract
and remember components to compare them, if there is only one single view. Since
recognition is easier than recall, visual comparison is easier than memory-based
comparison. Therefore, multiple views should be preferred.

6.4.3 Decomposition

Another case where the designer should choose multiple views is, if the data are very
complex, for example a spreadsheet with many columns. A single view approach
would be cognitively overwhelming to a user, but in a multiple view system the
spreadsheet could be divided in multiple views (divide and conquer).
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Figure 6.1: A multiple view system for data with different attributes and different
levels of abstraction [7].

6.4.4 Parsimony

Multiple views incur the cost of context switching and introduce additional system
complexity. Furthermore, more views lead to more learning costs for the end user.
Finally, the computational costs increase and more display place is needed. There-
fore, similar views should be merged to a single one.

6.5 Rules for Presentation and Interaction

After making the right decisions for selecting the views, it is important to choose the
right visualization methods, to make extracting information easier for the end user
and the right interface affordances, to minimize the learning costs of the application.
Baldonado et al. [7] has described four rules which should help designers to make
the right decisions.
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6.5.1 Space/Time Resource Optimization

An important aspect in connection with the presentation of multiple views is space
and time. A disadvantage of displaying views side-by-side is that it costs more
space, so the visual elements of a view are smaller. However, if the views are shown
sequentially, the user has to remember the data, if he or she wants to compare the
views. Which also should be considered is the additional computing time of a side-
by-side view. On the other hand the user saves time comparing the data. As we see,
it is a trade-off between usability and space/time resources which strongly depends
on the platform, e.g. on a Palm Pilot a sequential approach makes much more sense
than the side-by-side one.

Figure 6.2: Mutliple views of stack data, with a shared x-axis (time) to help the user
easily compare the views [7].

Figure 6.2 shows an example where two views, the closing price view and the
volume traded view are sharing the x-axis, which is an example for a side-by-side
view. However, there are different views for 1-day, 5-day, 3-month, 1-year, 2-year,
5-year, and max time scales, which are shown only one at a time, because of the
lack of display space.
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6.5.2 Self-Evidence

The use of perceptual cues helps making the relationship between views more
apparent to the end user. There are many types of perceptual cues. The most
important ones are highlighting, spatial arrangement, and coupled interaction.
When using perceptual cues there are some important issues to take care of:

• If the coupling is non-trivial, the mapping is hard to understand.

• Information needed to map between objects in all views has to be maintained.

• Visual and interactive components should not confuse the user. If two events
occur within 100ms, the user perceives them as causally related, but if it takes
longer, the user may fail to recognize to relationship. So, if computation takes
too long, the views should be decoupled and this decoupling should be made
evident to the user, e.g., by out-graying the decoupled view.

6.5.3 Consistency

System states and interface affordances should be consistent, because inconsistency
can lead to false cognitive inferences by the user. For example, if one view high-
lights one particular object, related views should highlight the same object. The
consistency in the interface affordances makes multiple view systems easier to learn.

6.5.4 Attention Management

The user interface designer should use perceptual techniques to focus the attention
of the user to the right view at the right time. This can be accomplished by high-
lighting, for example.
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Linking and Brushing

Linking and brushing is a state of the art information visualization technique, often
used in combination with multiple view systems, in case that it is necessary that a
subset of the displayed data (the data of interest) is distinguishable from the rest
of the data. Brushing [22, 33, 36] is the selection and highlighting of one or more
objects in the visual representation of the data. Linking means that the selection of
data performed by the user in one view is automatically applied in all other views,
so that the relationship between the visual elements of the views gets apparent for
the user. Figure 7.1 shows linking and brushing in a scatterplot matrix. The brush
has been applied to the second plot of the first row by drawing a rectangle around
the data to be highlighted. The selected data elements are highlighted (red) in all
plots.

7.1 Brushing

In information visualization we often have a huge amount of data to show, but not
all of the data is important all the time. Highlighting the data of interest is called
brushing. Common information visualization tools offer the possibility of either
selecting a single item or selecting multiple items, which is referred to as multiple
selection. Multiple selection is easier to apply in 2D than in 3D. In 2D, for example,
the user can simple draw a rectangle or lasso around the data to be highlighted.
Advanced techniques have to be introduced for multiple selection in 3D, which are
described in the following.
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Figure 7.1: Linking and Brushing in a scatterplot matrix [56].

7.1.1 Range Brushing

Range brushing is a brushing technique introduced by Kosara et al. [33], where
the user can define a brushing range in one or more axis. Objects that belong to
that range are highlighted. Figure 7.2 shows high pressure in a catalytic converter
dataset with a range slider in one dimension. In this example a range is defined for
the x-axis (red). All elements within that range are highlighted (green).

7.1.2 Beam Brushing

Beam brushing, which was also introduced by Kosara et al. [33], is a more direct
selection method. The selection happens by creating a cylinder perpendicular to
the viewport having a radius specified by the user. All items inside the cylinder are
selected. In Figure 7.3 such a selection is depicted.

7.1.3 Composite Brushing

Sometimes applying a set of single selections and combining them through logical
operations is desired. Composite brushing [33] is such a technique where the user
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Figure 7.2: Selecting high pressure in a catalytic converter dataset with a range
slider in one dimension [33].

Figure 7.3: The result of two beam brushes through a dataset that represents a part
of a CT scan of a head [33].
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can select data and combine the selections by AND, OR, and Subselection opera-
tions. Composite brushing can also be used to combine different brushing methods.

7.1.4 Smooth Brushing

As mentioned before, brushing is a technique to highlight data of interest. But in
some cases it is hard to decide if a data point is of interest or not. In such cases
smooth brushing [33] can be used, where data points have an interest value of not
only 0 or 1, but also in between. A DOI (degree of interest) function is used to
calculate the interest value. The interest value can be used, for example, to specify
the intensity of the color, which is used to highlight the data.



Chapter 8

Visualization of Activity Profiles

In the first two chapters virtual screening and in particular parallel screening were
described, where n molecules are screened against m targets. Afterwards, some
visualization techniques were discussed.

In the following two tools dealing with the problem of visualizing n:m (n to
m) drug target interactions are discussed. Both are developed by students from
the Vienna University of Technology1 in cooperation with Inte:ligand, a company,
which is developing software solutions for computer-driven drug research.

8.1 Ptft - Pharmacophore and Target Filtering Tool

8.1.1 Overview

Ptft is the first of the two prototypes developed by Inte:ligand, where the problem of
visualizing parallel screening results is analyzed and visualization techniques like
multiple views (s. chapter 6) and linking and brushing (s. chapter 7) are used for
the visualization.

In Ptft the screening is done statically, which means that the results have to be
saved in a file and can be loaded by the program. The focus of Ptft is the presentation
of these results and the exclusion of hits which are not of interest. The filtering
can be done by disabling specific target attributes. Furthermore, details for ligands
remaining after the filtering are provided, too.

Figure 8.1 provides an overview of Ptft. There are several views, which are
described in the following.

1Ptft was developed 2005 by A. Liebig and the author of this work and Hitvis 2006 by V. Sladariu
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Figure 8.1: An overview of Ptft (Pharmacophore and Targets Filtering Tool).

8.1.2 Attribute Class

For a better overview, the target attributes are broken apart into different attribute
classes (e.g., target type, pharmacological classification, therapeutical class, medi-
cal indication). Each class is displayed in a separate view, which allows the user to
see the correlations between the different attributes of the targets. Figure 8.2 shows
such a view. Attributes of a specific class (therapeutical class) are listed one below
the other.

The box on the very left of a row indicates whether the corresponding attribute is
enabled (box is filled) or not (box is not filled). If an attribute is disabled, all targets
having this attribute are filtered from the system, which results in filtering all hits
related to these targets. The filtering is done interactively by the user by clicking on
the boxes. Changes are automatically applied to all views after user interaction.

An important aspect of this view is the amount of hits of each loaded target
attribute, which is depicted by the bars. The width of the bars gives the user infor-
mation about the activities caused by the ligands used for screening. The width of a
bar is calculated relative to the attribute with the most hits of attributes of all classes.

On the bottom of the view the amount of filtered pharmacophores is shown. In
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Figure 8.2: The attribute class view for therapeutical class.

combination with the total amount of filtered pharmacophores, which is avaiable on
the statusbar of the application (see Figure 8.1), this information shows the propor-
tion of the filtering of each class.

The buttons below the attributes2 are, from left to right, for enabling and dis-
abling all attributes, removing lines with disabled attributes and adjusting the widths
of the bars relative to the attribute with the most hits of this class.

Another important part of this view is the selection of an attribute class by the
combobox. After selecting an attribute class the bar of each attribute is split into
multiple parts. Each part represents an attribute of the class selected by the com-
bobox. This information is encoded by the color, which is the same as the color of
the box of the attribute displayed in its own view. The width of each part shows the
corresponding proportion of hits to targets having both attributes, the one, which is
represented by the row and the one, which is related to. Figure 8.3 shows an exam-
ple, where target type is selected in the combobox of the therapeutical class view.

2The black and white colored buttons left to the combobox
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Figure 8.3: Correlation between attributes of therapeutical class and target type.

8.1.3 Tree Views

The relationship between molecules, pharmacophores and targets is shown in the
two tree-views: MoleculesTree and TargetsTree. The difference between these two
views is that the MoleculesTree is based on molecules and shows hierarchically
for each molecule pharmacophores and targets which are hit by this molecule. By
selecting a target in one of this views the corresponding attributes of the target can
be highlighted in the attribute class views (see Figure 8.4).

8.1.4 Detail View

Finally, there is a detail view in Ptft, where molecules are listed one below the other.
Each row represents one molecule. Details like 2D representation, name, and others
are displayed for each molecule (see Figure 8.5).
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Figure 8.4: Target 1 is selected in the MoleculesTree view. The Attributes of Target
1 are highlighted in the attribute class views.

Figure 8.5: Detail view of Ptft showing the 2D represention and attributes for each
molecule.
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8.2 HitVis - Hit Visualization

8.2.1 Overview

Inte:ligands second generation application for the visualization of n:m drug target
interactions is Hitvis. In Figure 8.6 an overview of Hitvis is shown. Just as in Ptft,

Figure 8.6: An overview of Inte:ligands second generation application for visualiz-
ing parallel screening results called HitVis.

the screening has to be done statically. The results are loaded from a file within the
program, and the Ptft data structures were reused.

There are again multiple views for filtering, showing activity profiles and view-
ing details of drug candidates. These views are linked with each other, so actions
performed in one view are automatically applied to all views. In the following each
of the views is shortly summarized.

8.2.2 Target View

The target view (s. Figure 8.7) consists of a heat map including height information,
so it is a mix of a heat- and height map. Each field in the map represents a target
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Figure 8.7: An overview of the Target View of Hitvis.

and is clustered by the attribute of the target. The attributes are split into separate
classes of attributes just as in Ptft. Only attributes of one class are displayed in the
target view, but the class to be shown can be changed by the combobox at the top of
the view. To allow graphical clustering, which means arranging fields of the same
attribute side by side, the position of each field is calculated at runtime.

The height of a field shows the total amount of hits of the corresponding target
relative to the hit amount of other targets. The same information is encoded by the
color of the field (white for no hits and yellow to red for one or more hits). The
color of the field should not be mixed up with the color of the cluster grid, which
represents a target attribute (see Figure 8.8).

Another feature of this view is that targets are highlighted when moving with
the mouse over the view. Figure 8.9 shows an example, where three fields are high-
lighted at the same time. All of them are representing the same target, having three
different attributes of the specified attribute class. The name of the target can be
readout from the statusbar at the bottom of the view.

In addition to the target name, the target view of HitVis allows for showing or
hiding names of attributes over the corresponding cluster by moving the slider on
the very right of the view up or down.
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Figure 8.8: An example showing that the hits amount is encoded by both, heat- and
height information. White fields for targets with no hits, yellow for
targets with one hit and dark red for targets with eight hits.

Figure 8.9: Targets are highlighted when moved with the mouse over the field. In
this example Target 126 is highlighted three times, because the target
has three different attributes of medical indication.
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8.2.3 Attribute View

The attribute view of Hitvis is similar to the attribute class views of Ptft if we imag-
ine that all of them are put together in one view one below the other. Each row
represents one attribute just as in Ptft. On the right the name of the attribute and on
the left the total amount and the amount of unfiltered hits of targets having this at-
tribute is displayed. The amount of unfiltered hits conforms to the bar width in Ptft.
Technically each row is a tri-state button. In the first state hits for targets with this
attribute are partially filtered by other constraints set in the program. The second
state unfilters these hits and the third state filters all hits of the attribute.

Furthermore, the attribute view is linked to the target view. Therefore filtering in
the attribute view is automatically applied to the target view. Another example for
the linking is that moving the mouse over the attribute view results in highlighting
of targets in the target view having the corresponding attribute. This is illustrated in
Figure 8.10.

Figure 8.10: In this example the cursor is over the target type Transport protein in
the attributes view. Therefore, all targets of the target type Transport
protein are highlighted in the targets view.
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8.2.4 Molecule View

The molecule view lists all molecules used for screening one below the other. By
selecting a molecule hits corresponding to the molecule become either filtered if
they were unfiltered before or vice versa.

The Switch button on the bottom of the view can be used to split the view into
two parts to separate filtered and unfiltered molecules (s. Figure 8.11).

Figure 8.11: On the left unfiltered molecules are blue and filtered molecules white.
On the right we have the situation after pressing the switch button,
where filtered and unfiltered molecules are separated.

8.2.5 Selected Hits and Details

Finally, there are the selected hits view and the detail view. The selected hits view
lists all unfiltered hits one below the other and is automatically updated if any filters
are changed. This view conforms to the tree views in Ptft. By selecting a row, which
represents a hit, details for the corresponding target and molecule are displayed
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in the details view. The details view is a pure textual view and offers an export
functionality of the displayed information. Figure 8.12 depicts both views.

Figure 8.12: The hit where Molecule_10 fits to Target_10 is selected in the selected
hits view. The details view shows the details of both, Molecule_10 and
Target_10.

8.3 Evaluation

Together with the Institute of Pharmacy of the Leopold-Franzens-University of Inns-
bruck the pros and cons of both applications, Ptft and Hitvis have been discussed
and analyzed. The meeting took about five hours and was made up of two parts. In
the first part the two applications were introduced, and in the second part they were
evaluated. The goal was on the one hand to extract and combine the advantages of
each approach and on the other hand to discuss the shortcomings and problems of
them and to find solutions. A total of eleven people took part of the moderated meet-
ing. Ten of them are chemical experts and do research in this area. In the following
the results of the evaluation of Ptft and HitVis are described.
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8.3.1 Ptft - Pharmacophore and Target Filtering Tool

Pros

• The representation of the amount of hits by bars allows an easy comparison.

• The bar visualization is simple and intuitive.

• The partition of the bars allows the user to see correlations between two at-
tribute classes.

• The 2D representation of the molecule in the detail view gives the user infor-
mation about the structure of the drug candidate.

Cons

• The attributes are sorted by name, but there is no sorting of the attributes by
amount of hits.

• When changing the size of an attribute class view, the height of each row
changed, which often results in too great or too small rows. Constant heights
with a scroll possibility would allow for better quantitative estimation.

• Hiding attributes with a hits amount lower than a minimum set by the user is
not supported.

• The tree views are not linked with the detail view.

• The tree views and the detail view are put into a tabbed pane. Therefore, they
can only be accessed sequentially and not all at once, which makes this part
of the program circuitous.

• Each view is put into a separate inner frame. This makes the resizing, moving
and rechanging the position of views very flexible. But the analyses have
shown that this feature is not needed by the user. The need to resize adjacent
views when resizing a particular view makes this method very circuitous.
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8.3.2 HitVis - Hit Visualization

Pros

• The heat map is very powerful, showing the amount of hits for each target
through heat and height information, the amount of hits for each attribute via
the size of the clusters, and, furthermore, allows interaction for filtering.

• Different layouts, which can be accessed through the menu or via keyboard
shortcuts allow the user to hide views which are not of interest and at the same
time there is more place for the views of interest.

Cons

• If too many targets and hits are displayed the performance of Hitvis becomes
bad.

• The correlation between attributes of different attribute classes is missing.

• The amount of hits of each target is numerically displayed and not graphically,
which makes it difficult to compare them.

• Too much information like attributes, hits amount and highlighting is encoded
by color. Because of this overloading of colors extracting the right informa-
tion takes more time.

• The sorting of the attributes by the hits amount is missing.

• The hiding of attributes in the attributes view is completely missing.

• In connection with highlighting targets, the attribute view is linked to the tar-
get view only in one direction.

• Highlighting targets by moving the mouse in the molecules view is not sup-
ported.

• Just as in Ptft, the use of inner frames is very circuitous.
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8.3.3 Conclusions

1. The analysis and discussion has shown that the heat map with height informa-
tion is a very powerful tool for such a problem. A drawback of the heat map
in Hitvis is the performance. The application gets very slow when the amount
of items to display increases. The main reason for the performance problems
is the use of Java2D, which is not hardware accelerated. Using OpenGL for
the map will dramatically increase the performance and enable the use of 3D
graphics, which can be very interesting in connection with the height infor-
mation of the map.

2. To solve the problems arisen from encoding too much information with col-
ors, the clusters should be spatially separated from each other and in addition,
the heat information should be encoded by the intensity of the attribute color.

3. The discussion also showed that there is no need for the rounded rectangles
within the fields. Removing them will result in less visual objects, which
should help the user to concentrate on the ones that are remaining.

4. The visualization of attributes in Ptft is the one which should be preferred.
The numerical representation of the hits amount in Hitvis can be used as an
additional information, but the bars used in Ptft allow an easier comparison
and have the bonus of showing the correlation to attributes of another class.

5. Problems existing in both of the applications are that sorting of lists or tables
and that hiding of filtered elements are not supported. These problems should
be addressed to allow the user to have a better overview of the relevant data.

6. Working with split panes is much faster than with inner frames.

7. Finally, the layout concept of Hitvis, where the user can hide views, which
are not of interest, is a powerful mechanism to overcome the lack of display
space.



Chapter 9

Apt (Activity Profiling Tool)

In the prior chapters state of the art techniques and tools for the visualization of n:m
drug target interactions were described and analyzed. Together with the Institute of
Pharmacy of the Leopold-Franzens-University of Innsbruck the tools Ptft and Hitvis
were analyzed and improvement potentials were discussed. The third generation
activity profiling tool of Inte:ligand is developed as part of this work and is described
in this chapter.

9.1 Overview

Apt is written in Java SE 5 [1] and is not compatible to older versions, because of
the use of generic types. Since some imports are reorganized in Java SE 6 [2], Apt
is also incompatible to Java SE 6, but is prepared for upgrade to Java SE 6.

In the following an overview of the main features of Apt (see Figure 9.1) is
provided.

9.1.1 Screening

A drawback of Ptft and Hitvis is that screening itself is not supported. The user has
to screen in a separate application and save the results in a specific format, which
can be used by Hitvis and Ptft to load the results. The reason for this is on the
one hand that screening thousands of molecules against hundreds of targets can take
a very long time. On the other hand at that time when these two programs were
developed the technical infrastructure, like pharmacophore databases and matching
libraries were not as sophisticated as they are today.
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Figure 9.1: An overview of Apt (Activity Profiling Tool).
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However, Apt supports screening in a dynamic way. The user can choose molecule
libraries and target sets for screening. The screening is performed in the background
and the GUI is updated whenever new incoming results are available. The status of
the overall screening process is shown by a progress bar, which is updated regu-
larly. Furthermore, new incoming results are highlighted to inform the user about
the updates. Since the overall screening of huge libraries can take several days or
weeks Apt supports pausing a screening session. The user can continue the session
whenever he or she wants. Another feature of Apt in connection with screening is
that already finished results can be loaded at any time.

9.1.2 Multiple Views

Just as in Ptft and Hitvis the concept of multiple views combined with linking and
brushing is used for a user-effective interactive visualization and filtering of screen-
ing results. An important improvement is that more views are linked with each other
and that the highlighting and filtering of data is much more consistent in Apt. Multi-
ple split panes are used instead of inner frames to divide the views, which allows for
a very quick resizing of the views. The arrangement of the views can be defined by
the user making the layout of Apt very flexible. Almost all views can be displayed at
once, only detail views and tree views are tabbed and can be accessed sequentially.

9.1.3 Highlighting and Filtering

In Apt there are three views that support filtering: the target view, the attribute view,
and the molecule view. The filtering is done based on hits, which means selecting
a molecule, a target or an target attribute for filtering results in filtering all hits
corresponding to the selected element. Moving the mouse over an element of one
of these views highlights all elements, which would be affected if that element is
selected for filtering. The same applies for the unfiltering of hits.

9.1.4 Target View

For the visualization of the activity profiles a heat map with height information, sim-
ilar to the one in Hitvis, is used. A drawback of the one in Hitvis is that the use of
Java2D slows down the application, if too many targets and hits have to be displayed
on the map. The heat map in Apt is also written in Java, but by using JOGL (Java
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bindings for OpenGL) [41, 65, 6, 20, 32, 37, 47, 48, 43] Apt takes full advantage
of the hardware acceleration to dramatically increase the performance of the appli-
cation. Furthermore OpenGLs 3D API allows a perspective representation of the
map, which helps the user examining the height information on the map. Moreover
the target view in Apt consists of two parts. One showing the map of the attribute
class selected by the user and allowing user interaction and the other one displaying
an overview of the other maps. The layout of the map and the representation of
the fields has also changed in Apt. Free space is left between the clusters to clearly
separate them from each other and the heat information of the fields are now shown
by the intensity of the grid color.

9.1.5 Attribute View

The attribute view shows target attributes separated into different classes. The name
of the attribute and numerical information about hits from targets having this at-
tribute are displayed in a tabular form. Furthermore the attribute view allows for
filtering and highlighting hits and is linked with the target view and molecule view
in both directions.

9.1.6 Molecule View

The molecule view is separated into two parts. One displaying all molecules and
information about the amount of hits in which they are occurring and the other
part which is a list of molecules remaining after the filtering (“result list“). Both
parts are linked to the filtering mechanism of Apt, but only the first part allows user
interaction and highlighting of hits.

9.1.7 Tree Views

Apt offers two tree views placed in a tabbed pane. Both show the relationship be-
tween molecules, pharmacophores and targets of unfiltered hits. One with molecules
as top level nodes and the other one with targets as top level nodes. The trees are
linked to the other views for receiving filtering information to dynamically update
the trees when constraints have been added or removed. Selecting a hit in one of the
trees shows the corresponding ligand in the detail views.
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9.1.8 Detail Views

There are two detail views in Apt which are separated on different tabs, too. One
shows the 2D representation and the other one shows the 3D representation of the
molecule of the corresponding hit, that was selected in one of the tree views.

9.2 Screening

This section describes the screening concept of Apt with a special focus on the
interfaces allowing an easy exchange of the screening client of Apt.

9.2.1 The Screening Concept

The screening concept of Apt is illustrated in Figure 9.2. An IHitHandler is regis-

Figure 9.2: Screening concept of Apt.

tered to the IScreeningClient (see Appendix A.1.1). The IScreeningClient sends hits
to the handler whenever new displayable hits are available. The IHitHandler (see
Appendix A.1.3) uses the SessionController to add the new incoming hits to the sys-
tem and saves the hits in the molecule file (see table 9.1 on page 62). Furthermore
the IScreeningClient regularly sends progress information to the IHitHandler. The
handler uses the SessionController to save the new progress status in the session
information file and updates the progress bar in the GUI.

The use of the IHitHandler interface in between the SessionController and IS-
creeningClient allows to easily change the handling of new hits and progress up-
dates. For example, one could save the hits in a different file format or in a database.



CHAPTER 9. APT (ACTIVITY PROFILING TOOL) 59

The reason for using an interface for the screening client is to allow different
client solutions. The default screening client in Apt is the LocalScreeningClient
(see Appendix A.1.2), where a separate thread is started to perform screening on the
local machine.

9.2.2 Peer-To-Peer Screening

A high-performance implementation of the IScreeningClient is provided by Liebig
[38]. He makes use of the peer-to-peer framework JXTA to use multiple clients
to enhance the screening speed. The so called JxtaScreeningClient only works in
a LAN and only makes sense, if there are at least three machines available. An
schematic overview of the peer-to-peer approach is depicted in Figure 9.3. At the

Figure 9.3: A schematic overview of the peer-to-peer screening approach intro-
duced by Liebig [38]. On the top is the peer-to-peer client implement-
ing the IScreeningClient interface of Apt. The blue boxes are represent-
ing peers in the LAN.

top there is the JxtaScreeningClient which implements the IScreeningClient inter-
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face. After starting a screening session the screening client sends all molecules and
pharmacophores to be screened against each other to the Dispatcher, which is a
JXTA-Peer. The Dispatcher splits this work-unit into multiple work-units. In a loop
the Dispatcher sends these work-units to Worker peers. Whenever a worker peer
finishes its work and sends back its result it gets a new work-unit. The Dispatcher
queues all results until the screening client polls them. The blue boxes in Figure 9.3
represent JXTA peers. The fact that a Dispatcher is needed and that there is a lit-
tle overhead of the peer-to-peer framework shows that at least two Worker peers,
which means a total of three peers, is needed to be profitable. However, the parallel
working of multiple clients can dramatically speed up the overall screening perfor-
mance of Apt. Another important advantage of this peer-to-peer approach is that the
screening process itself is completely decoupled from the GUI, which means that
closing Apt after a screening session is started does not affect the screening process
at all. The Dispatcher continues queuing screening results, which can be retrieved,
for example, when Apt is started next time.

9.2.3 Starting and Stopping a Screening Session

To start a new screening session the user needs to select molecules and targets.
The supported file format for molecules is Inte:ligands internal molecule binary
format CPB1, where molecules are listed one below the other and can be accessed
by an index. Targets and pharmacophores are stored in a database. The screening
information of pharmacophores is stored in PMZ2 format in the database. To start
a screening session the user needs to select a molecule library (CPB-file) and a set
of targets. The default target set in Apt is the ”All-targets“ set which represents
all targets stored in the database having pharmacophores with a pmz file. Finally
the user has to specify a file for saving the new session. Figure 9.4 shows the GUI
for starting a new session. The import and export of all objects in Apt (molecules,
targets, pharmacophores,...) is done by the use of interfaces which let developers
easily change the file format or add support for other file formats.

To stop a started screening session one has to select ”Stop Session“ in the session
menu.

1Compressed Pharmaceutical Binary
2Compressed Pharmaceutical Markup Language
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Figure 9.4: The GUI for starting a new screening session.

9.2.4 Saving a Screening Session

After starting a new session Apt saves the session information in files described in
table 9.1. The Session File is the file, which the user selects, when loading a prior
started session. It saves the Session-ID, which is retrieved from the screening client,
when starting a session. Furthermore, progress information is kept in the Session
File, too. Information about targets, pharmacophores and molecules are saved in
separate files. The Session file saves only the filepath to these files.
The Targets File saves the ID, name, and attributes of all targets that are selected
for the screening session.
Information about pharmacophores is stored in the Pharmacophores File. The
ID, name and target-IDs of all corresponding targets are provided for each pharma-
cophore. Finally, molecules are stored in the Molecule File. For each molecule the
ID, name and all pharmacophore-ID’s, the molecule fits to, are saved in the file.
All files are accessed by import, and export interfaces (see Appendix A.3).

9.3 Linking and Brushing in Apt

In Apt there are several views which are linked for highlighting and filtering of hits.
Moreover, there are views that are linked for showing molecule and pharmacophore
details.
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Session File .ses
Session-ID, progress information, and the filepath
to the Target-, Pharmacophore- and Molecule File
is specified.

Target File .ata
IDs, names, and attributes of all targets are listed
one below the other.

Pharmacophore File .pha
IDs, names, and the IDs of the corresponding tar-
gets for all pharmacophores are listed one below
the other.

Molecule File .aml
IDs, names, and matched pharmacophores for all
molecules are specified.

Table 9.1: Session files used by Apt.

9.3.1 Highlighting and Filtering

There are three views supporting highlighting and filtering of hits, the Target View,
the Attribute View, and the Molecule View. Whenever the user moves the mouse
over data objects like targets or molecules, Apt highlights all data objects which
would be affected by the filtering of this data object. An example is shown in
Figure 9.5 and Figure 9.6. Figure 9.5 shows the situation when the user moves
the mouse over the Attribute View and is above the Medical Indication ”protein-
protein interactions”. Filtering this attribute would result in filtering all hits of
targets having the Medical Indication ”protein-protein interactions”. This filtering
would also affect some molecules, targets, and other attributes like immunologic
(Pharmacological-Classification). Therefore, all affected objects are highlighted.

Figure 9.6 shows the situation after selecting the Medical Indication ”protein-
protein interactions” in the Attribute View. All hits of targets having the Medi-
cal Indication ”protein-protein interactions” are automatically filtered. Figure 9.6
shows clearly that all highlighted objects are affected from this filtering.

9.3.2 Molecule Details

The two Tree Views and the Ligand-2D/3D views are linked with each other. To
show the 2D or 3D representation of an molecule the appropriate hit in one of the
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Figure 9.5: An example where the user moves with the mouse over “protein-protein
interactions” in the Attribute View. In the general view the affected
objects are surrounded with an orange box. These boxes are drawn to a
larger scale below.
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Figure 9.6: After selecting “protein-protein interactions” in the Attribute View all
hits of targets having this attribute are filtered. In the general view the
affected objects are surrounded with an orange box. These boxes are
drawn to a larger scale below.
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tree views can be selected. Figure 9.7 shows an example where the molecule “1,11-
DIHYDROXYACLARUBICIN“ was selected in the Tree View. The Ligand-2D view
on the right shows the 2D structure of the molecule.

Figure 9.7: The green highlighted molecule is selected in the Tree View. The
Ligand-2D View shows the 2D structure of the ligand.

9.4 Target View

The Target View of Apt is a very powerful tool for displaying activity profiles. For
an effective visualization of parallel screening results a Heat- and Height Map has
been combined (see Figure 9.8).

The view consists of multiple maps, one for each attribute class. Only one is
displayed large and allows for user interaction. The others provide an overview of
the activity profiles of their attribute class and are linked to the highlighting and
filtering mechanism of Apt. Selecting one of these maps exchanges it with the large
one.

Each of the maps are composed of multiple field clusters. A cluster is represent-
ing a target attribute and is made up of fields, one for each target having the cor-
responding attribute. Each target attribute and therefore also each cluster of fields
has its own unique color. The intensity of the color of each field, which is the heat
information of the map, indicates the amount of hits matching to the corresponding
target. The darker the color of the field, the more hits the target has. The same
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Figure 9.8: An example showing the powerful Target View of Apt and the color
legend.
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information is encoded through the height of each field. The higher the cuboid of
the field, the more hits the target has.

In the main map of the Target View hits of a particular target can be filtered or
unfiltered by selecting the appropriate field. Selecting a cluster results in filtering
hits of all targets within the cluster. This is equivalent to selecting the attribute
represented by the cluster in the Attribute View. When moving the mouse over
a field of the main map the information panel below the map shows information
about the field (attribute class, target attribute, and target name).

The maps are written in Java using JOGL (Java bindings for OpenGL) for hard-
ware acceleration. One of the most important drawbacks of Hitvis, where a similar
solution is used to display activity profiles, is that it gets performance problems if
large molecule and target libraries are loaded. JOGL enables a high-performance
implementation of the maps. Furthermore it offers a 3D API for a perspective vi-
sualization of the maps. Zooming and rotating the maps is also supported by Apt,
which allows the user to navigate through the map and to have a different view of
the activity profiles.

Another interesting aspect of the map is the layout of the clusters. The
development of an applicable algorithm for the layout (see Appendix A.2) was also
part of this work and is explained in the following. In Figure 9.9 the meaning of
some terms, which are used in the explanation, are illustrated by example.

The steps of the algorithm are:

1. Sort the list of clusters by their amount of fields in descending order.

2. Initially set MaxFieldsPerRow and MaxFieldsPerColumn to the square root
of the total amount of fields in the map rounded up.

3. Set MaxFieldsPerRowInCluster to MaxFieldsPerRow divided by the size of
clusters to ensure that there are enough columns for the worst case where only
one cluster fits to each column. Furthermore, if the largest cluster does not fit
into the map because of insufficient rows, increase MaxFieldsPerRowInClus-
ter until it does.

4. For each column of the map iterate through the sorted list of clusters and
insert clusters, fitting into the column, starting from the top of the column.
The fact that the list is sorted ensures that the largest possible clusters are
always inserted first.
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Figure 9.9: Terms used in the Layout-Algorithm of the maps in the Target View.

5. Now, after all columns are iterated through, check if there are any clusters
left, which are not placed on the map. If true, increase MaxFieldsPerRow and
MaxFieldsPerColumn by one and continue with step 3, otherwise the creation
of the map is finished.

Implementation
The implementation of the Target View is split into a logic- and a user interface part.

The logic part (TargetViewController) handles the logic for the backend and sets
the data to be shown in the user interface components.

In the user interface part of the Target View there is the class TargetView. Every
change in the data is forwarded from the TargetViewController to the TargetView.
The TargetView itself consists of multiple TargetMaps, one for each attribute class.
The TargetMap implements the GLEventListener interface which is needed to add it
to the GLCanvas, which is a heavyweight container of the JOGL API. A schematic
overview of the implementation of the Target View is shown in Figure 9.10.
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Figure 9.10: A schematic overview of the implementation of the Target View.

9.5 Attribute View

The Attribute View is a tabular view of all target attributes classified by attribute
type/class (see Figure 9.11 on page 71).

Starting from the left, each row shows the following information of a target
attribute:

• The unique color of the attribute, which is the same used for the corresponding
cluster in the Target View.

• The amount of unfiltered hits of targets having this attribute.

• The total amount of hits of targets having this attribute.

• The name of the target attribute.

The Attribute View allows for an interactive highlighting and filtering of hits like
the Target- and Molecule View. Moving the mouse over attributes highlights all
objects in the mentioned views that would be affected by the filtering caused by the
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selection of the attribute. All views are updated if a filtering action is performed in
the Attribute View and vice versa.

The attributes of each attribute class are put into separate scroll panes and
each scroll pane is resizeable on the y-axis. This allows the user to analyze more
attributes of an attribute class by enlarging its view.

Implementation
Like the implementation of the Target View, the implementation of the Attribute
View is divided into a logic- and a user interface part (see Figure 9.12).

The AttributeViewController handles the backend operations and the Attribute-
View is responsible for drawing the user interface components of the Attribute View.
The AttributeView is composed of multiple AttributeClassPanels, one for each at-
tribute class. Each AttributeClassPanel uses an IlibScrollPane to display the target
attributes of the class.

9.6 Molecule View

The Molecule View is made up of two separate views. One is showing all molecules
which have fit to any of the targets of the set selected at the very beginning of the
session. The other is only showing the molecules remaining after all filters have
been applied and is therefore the result list of the virtual screening and activity
profiling process. The first one is shown in Figure 9.13 on the left and is build
up very similar to the Attribute View. Starting from the left each row contains the
following information of a molecule:

• The amount of unfiltered hits of the molecule.

• The total amount of hits of the molecule.

• The name of the molecule.

This view also supports the interactive highlighting and filtering of hits, which
works exactly the same as in the Target View and the Attribute View.

The second view is depicted in Figure 9.13 on the right and displays only
the names of the molecules. No user interaction is supported, but the view is
immediately updated whenever hits are filtered in any of the views.
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Figure 9.11: An overview of the Attribute View is shown on the left, the attribute
class Therapeutic-Class on the right.
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Figure 9.12: A schematic overview of the implementation of the Attribute View.

Figure 9.13: The two views of the Molecule View.
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Implementation
The implementation of the Molecule View is also split up into a logic- and a user
interface part. The MoleculeViewController handles the logic and the MoleculeView
the user interface. The user interface is build up of two containers, one for the
interactive view which is an IlibScrollPane with a tabular visualization of the
molecules and their hit amounts. The other container is also an IlibScrollPane and
contains MoleculeNameLabels. Figure 9.14 shows a schematic overview of the
implementation of the Molecule View.

Figure 9.14: A schematic overview of the implementation of the Molecule View.

9.7 Tree Views

In Apt there are two hierarchical views, which are showing: molecules, pharma-
cophores, and targets of unfiltered hits. The difference between the two views is the
different point of view, respectively. In one of the two views the top level nodes are
molecules and in the other view the top level nodes are targets. They are placed into
a tabbed pane and can only be displayed sequentially. Figure 9.15 shows both views
side by side. The views do not support highlighting and interactive filtering of hits,
but changes in other views are immediately updated in the trees. Furthermore, the
views are linked with the detail views. Selecting a hit in one of the tree views shows
the appropriate molecule in the detail views.
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Figure 9.15: The Tree Views of Apt, which are showing the molecules, pharma-
cophores, and targets of all unfiltered hits.

Implementation
The implementation of the tree views is similar to other views of Apt. The
TreeViewController manages the logic of the trees and the TreeView class handles
the user interface of the trees. For the visualization of the trees SimpleTree was
developed and used instead of the default JTree. The reason for this is the lack of
performance of the JTree when dynamically inserting or removing thousands of
nodes. The SimpleTrees are both placed in IlibTabbedPanes. The implementation
of the tree views is illustrated in Figure 9.16.

9.8 Detail Views

There are two detail views in Apt. One is showing the 2D structure and the other
one the 3D structure of a ligand. The view is linked with the tree views. If any hit is
selected in one of the tree views the corresponding ligand is shown in the two detail
views. Just as the tree views, the detail views are placed in a tabbed pane. Both
views are part of Inte:ligands API. Figure 9.17 on page 76 shows them side by side.
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Figure 9.16: A schematic overview of the implementation of the hierarchical views
of Apt.

Implementation
As mentioned above, the views are part of Inte:ligand’s API [63], only a con-
troller for backend handling and access to the components was implemented
(DetailsViewController).
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Figure 9.17: The detail views of Apt, which are showing the 2D and 3D structure
of molecules.



Chapter 10

Summary and Outlook

In the following a summary of this work is given, together with the results of the
evaluation of our tool called Apt showing the benefits and drawbacks of the new
approach. Based on the results of the evaluation an outlook for future improvements
is given afterwards.

Recent advances in informatics have induced many research fields to use
computer-aided methods for their purposes. One of these fields is drug discovery.
The goal of drug discovery is to find chemicals, which cause a particular bio-
logical activity in human body that helps human beings to cure from diseases. A
computer-based approach to achieve this is virtual screening, where large libraries
of molecules are screened virtually against a drug target. But screening molecule
libraries against a single target does not show side effects. Therefore, tests are
applied after the screening process, where drug candidates are tested against
multiple targets. In activity profiling, which combines these two methods, molecule
libraries are screened against target sets. To analyze the huge amount of results of
this process advanced visualization techniques are required.

Ptft and Hitvis are two applications developed by Inte:ligand which are dealing
with this problem. Both are implemented in multiple view systems (see chapter 6)
using user-interactive linking and brushing (see chapter 7) methods for filtering and
visualizing parallel virtual screening results (see chapter 3). The pros and cons of
both approaches were discussed in chapter 8. These two tools formed the starting
point for the implementation of a new tool: Apt (Activity Profiling Tool).

The development of Apt, which should combine advantages of both approaches,
Ptft and HitVis, and address the drawbacks of them, was part of this work and is
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described in chapter 9. Especially the 3D map with heat and height information of
Apt seems to be very promising. Apt was evaluated by two members of the Institute
of Pharmacy of the Leopold-Franzens-University of Innsbruck, who are experts in
this field: Dr. Thierry Langer and Dr. Daniela Schuster. The evaluation took three
hours, was not moderated and was done in the form of brainstoarming. The results
of the evaluation are:

• The spaces left between the clusters lead to a better separation of the at-
tributes.

• The use of the color intensity as heat information avoids that too much in-
formation is encoded by colors, which was an important point of criticism of
Hitvis.

• The heat information is now local and not global anymore. The reason there-
fore is the use of different colors in each cluster, so heat information is hard
to compare through multiple clusters. Therefore the height information got
more important.

• The user can access the height information of the map much better by zoom-
ing and rotating the 3D map.

• The performance of Apt seems to be good even though thousands of
molecules and targets are screened.

• The visualization of new incoming hits, by highlighting them, is very intuitive,
but may disturb the user if the frequency of new incoming hits is too high.

• This disturbance factor has been addressed by introducing a pause function
for pausing a screening session.

• Only the tree views are linked to the detail views. Additional links to the
Ligand 2D/3D view are desired.

The evaluation shows that the improvements of Apt are very valuable and promising.
But it also shows that some issues remain. Together with features, which were not
implemented yet, some further possible improvements remain, which are described
in the following:
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• When moving the mouse over the Target-, Attribute- or Molecule View Apt
highlights all elements that would be affected from filtering. However, the
extent of the filtering is not shown. Smooth Brushing, which is described in
chapter 7 could be a method to extract this information.

• The bars in Ptft provide a very fast way for comparing hit amounts and
are able to show the correlation between attributes of two different attribute
classes. They could be integrated in Apt by combining them with the numer-
ical representation of the hit amounts in the Attribute View.

• The detail views are only linked to the Tree Views and could be linked to other
views as well, especially to the Molecule View.



Chapter 11

Conclusions

The visualization of n:m drug target interactions is a difficult task since it involves
huge amounts of data. The fact that the information to be displayed is very complex
requires the use of advanced visualization techniques. But hardware and software
limits are a challenge for developers trying to implement user-friendly software.
Therefore, often trade-offs between usability and performance have to be done and
to make the right decisions it is crucial to consult the users. This was an important
aspect of this thesis. Together with chemists from the University of Innsbruck Ptft
and Hitvis were analyzed in detail. The insights gained from these discussions were
an important starting point for developing Apt.

The most important improvements of Apt are:

• Dynamic screening

• Hardware acceleration by using OpenGL

• Improved layout of the heat map

• 3D visualization of the heat map, which supports zooming, and rotating the
map

• Improved highlighting and filtering of hits

• Ligand-2D/3D view

Finally, there is an important insight I have gained working on this thesis, which I
would like to note.
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Information visualization is a research field where permanently new techniques are
introduced. It is important to know how and when to use them. But, in my opinion,
it is even more important to be creative enough to combine these techniques and
assemble a custom visualization form, which exactly fits to the dealt problem.
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Appendix A

Code Samples

A.1 Screening Client

In the following the source code of the interfaces and classes of the screening client implemen-
tation of Apt is provided.

A.1.1 IScreeningClient

1 p u b l i c i n t e r f a c e I S c r e e n i n g C l i e n t {
2 p u b l i c S t r i n g s t a r t ( S t r i n g m o l l i b F i l e P a t h , Vector < S t r i n g >

pharmacophores ) throws S c r e e n i n g C l i e n t E x c e p t i o n ;
3

4 p u b l i c v o i d s t o p ( ) ;
5

6 p u b l i c v o i d r e c o n n e c t ( S t r i n g i d ) throws S c r e e n i n g C l i e n t E x c e p t i o n ;
7

8 p u b l i c v o i d a d d H i t H a n d l e r ( I H i t H a n d l e r h a n d l e r ) ;
9

10 p u b l i c v o i d r emoveHi tHand le r ( I H i t H a n d l e r h a n d l e r ) ;
11 }
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A.1.2 LocalScreeningClient

1

2 p u b l i c c l a s s L o c a l S c r e e n i n g C l i e n t implements I S c r e e n i n g C l i e n t {
3

4 p r i v a t e c l a s s S c r e e n i n g T h r e a d e x t e n d s Thread {
5

6 p r i v a t e C o m p r e s s e d M o l e c u l e L i b r a r y A c c e s s o r m o l e c u l e L i b r a r y A c c e s s o r ;
7 p r i v a t e i n t t o t a l W o r k U n i t s ;
8 p r i v a t e long s t a r t T i m e ;
9 p r i v a t e boo lean s t o p ;

10

11 p r i v a t e S c r e e n i n g T h r e a d ( ) throws S c r e e n i n g C l i e n t E x c e p t i o n {
12 t r y {
13 m o l e c u l e L i b r a r y A c c e s s o r = new

C o m p r e s s e d M o l e c u l e L i b r a r y A c c e s s o r ( m f l F i l e P a t h ) ;
14 } c a t c h ( E x c e p t i o n e ) {
15 e . p r i n t S t a c k T r a c e ( ) ;
16 throw new S c r e e n i n g C l i e n t E x c e p t i o n ( e . ge tMessage ( ) ) ;
17 }
18 t o t a l W o r k U n i t s = m o l e c u l e L i b r a r y A c c e s s o r . g e t S i z e ( ) ∗ pharmacophores .

s i z e ( ) ;
19 s t a r t T i m e =System . c u r r e n t T i m e M i l l i s ( ) ;
20 s t o p = f a l s e ;
21 }
22

23 p u b l i c v o i d run ( ) {
24 t r y {
25 long l a s t R e t u r n e d R e s u l t = s t a r t T i m e ;
26 i n t mIndex = molIndex ;
27 f o r ( i n t j = pha Index ; j < pha rmacophores . s i z e ( ) ; j ++) {
28 p r e f s . s t o r e P r e f e r e n c e (PHA_INDEX , new I n t e g e r ( j ) . t o S t r i n g ( ) ) ;
29 S t r i n g pha Id = pharmacophores . g e t ( j ) ;
30 Pharmacophore pha = impor tPha rmacophore ( pha Id ) ;
31 f o r ( i n t i =mIndex ; i <= m o l e c u l e L i b r a r y A c c e s s o r . g e t S i z e ( ) ; i ++)

{
32 i f ( s t o p )
33 r e t u r n ;
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34 p r e f s . s t o r e P r e f e r e n c e (MOL_INDEX, new I n t e g e r ( i ) . t o S t r i n g ( )
) ;

35 System . o u t . p r i n t l n ( " S c r e e n i n g : pha Index ="+ j +" molIndex ="+ i
) ;

36 f o r ( I H i t H a n d l e r h i t H a n d l e r : h i t H a n d l e r s )
37 h i t H a n d l e r . p r o g r e s s U p d a t e ( new P r o g r e s s ( t o t a l W o r k U n i t s , j ∗

m o l e c u l e L i b r a r y A c c e s s o r . g e t S i z e ( ) +( i −1) , s t a r t T i m e ,
l a s t R e t u r n e d R e s u l t ) ) ;

38 Molecu le mol = m o l e c u l e L i b r a r y A c c e s s o r . g e t M o l e c u l e A t ( i ) ;
39 i f ( match ( mol , pha ) ) {
40 M o l e c u l e L i b r a r y A c c e s s o r M o l e c u l e I n f o mol In fo = new

M o l e c u l e L i b r a r y A c c e s s o r M o l e c u l e I n f o ( ) ;
41 mol In fo . se tMoleculeName ( mol . getName ( ) ) ;
42 mol In fo . s e t L i b r a r y P a t h ( m f l F i l e P a t h ) ;
43 mol In fo . s e t P o s i t i o n ( i ) ;
44 S c r e e n i n g W o r k R e s u l t D a t a r e s u l t = new

S c r e e n i n g W o r k R e s u l t D a t a ( molInfo , phaId , t r u e ) ;
45 f o r ( I H i t H a n d l e r h i t H a n d l e r : h i t H a n d l e r s )
46 h i t H a n d l e r . r e s u l t R e c e i v e d ( r e s u l t ) ;
47 l a s t R e t u r n e d R e s u l t =System . c u r r e n t T i m e M i l l i s ( ) ;
48 }
49 }
50 mIndex =1;
51 }
52 f o r ( I H i t H a n d l e r h i t H a n d l e r : h i t H a n d l e r s )
53 h i t H a n d l e r . p r o g r e s s U p d a t e ( new P r o g r e s s ( t o t a l W o r k U n i t s ,

t o t a l W o r k U n i t s , s t a r t T i m e , l a s t R e t u r n e d R e s u l t ) ) ;
54 p r e f s . g e t F i l e ( ) . d e l e t e ( ) ;
55 } c a t c h ( E x c e p t i o n e ) {
56 e . p r i n t S t a c k T r a c e ( ) ;
57 }
58 }
59

60 p r i v a t e v o i d s t o p T h r e a d ( ) {
61 t h i s . s t o p = t r u e ;
62 }
63 }
64
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65 p r i v a t e s t a t i c f i n a l S t r i n g PHAS = " phas " ;
66 p r i v a t e s t a t i c f i n a l S t r i n g MOL_INDEX = " molIndex " ;
67 p r i v a t e s t a t i c f i n a l S t r i n g PHA_INDEX = " phaIndex " ;
68 p r i v a t e s t a t i c f i n a l S t r i n g FILE = " f i l e " ;
69 p r i v a t e s t a t i c f i n a l S t r i n g SEPERATOR = " , " ;
70 p r i v a t e DBData dbData ;
71 p r i v a t e Vector < I H i t H a n d l e r > h i t H a n d l e r s ;
72 p r i v a t e S t r i n g l o c a l S c r e e n i n g C l i e n t s D i r ;
73 p r i v a t e P r e f e r e n c e s p r e f s ;
74 p r i v a t e S c r e e n i n g T h r e a d s c r e e n i n g T h r e a d ;
75 p r i v a t e S t r i n g m f l F i l e P a t h ;
76 p r i v a t e Vector < S t r i n g > pharmacophores ;
77 p r i v a t e i n t phaIndex ;
78 p r i v a t e i n t molIndex ;
79

80 p u b l i c L o c a l S c r e e n i n g C l i e n t ( DBData dbData ) throws IOExcep t i on {
81 t h i s . dbData = dbData ;
82 h i t H a n d l e r s = new Vector < I H i t H a n d l e r > ( ) ;
83 A p t A p p l i c a t i o n C o n t r o l l e r c o n t r o l l e r = ( A p t A p p l i c a t i o n C o n t r o l l e r )

Run t imeContex t . g e t R u n t i m e C o n t e x t ( ) . g e t A p p l i c a t i o n C o n t r o l l e r ( ) ;
84 l o c a l S c r e e n i n g C l i e n t s D i r = c o n t r o l l e r . g e t L o c a l S c r e e n i n g C l i e n t s D i r

( ) ;
85 }
86

87 p u b l i c v o i d a d d H i t H a n d l e r ( I H i t H a n d l e r h a n d l e r ) {
88 h i t H a n d l e r s . add ( h a n d l e r ) ;
89 }
90

91 p u b l i c v o i d r e c o n n e c t ( S t r i n g i d ) throws S c r e e n i n g C l i e n t E x c e p t i o n {
92 t r y {
93 p r e f s = new P r e f e r e n c e s ( l o c a l S c r e e n i n g C l i e n t s D i r +" / "+ i d ) ;
94 } c a t c h ( IOExcep t ion e ) {
95 e . p r i n t S t a c k T r a c e ( ) ;
96 throw new S c r e e n i n g C l i e n t E x c e p t i o n ( e . ge tMessage ( ) ) ;
97 }
98 t h i s . m f l F i l e P a t h = p r e f s . g e t P r e f e r e n c e ( FILE ) ;
99 t h i s . pha rmacophores = g e t P h a I d s ( p r e f s . g e t P r e f e r e n c e (PHAS) ) ;

100 t h i s . pha Index = I n t e g e r . p a r s e I n t ( p r e f s . g e t P r e f e r e n c e (PHA_INDEX) ) ;
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101 t h i s . molIndex = I n t e g e r . p a r s e I n t ( p r e f s . g e t P r e f e r e n c e (MOL_INDEX) ) ;
102 s c r e e n i n g T h r e a d = new S c r e e n i n g T h r e a d ( ) ;
103 s c r e e n i n g T h r e a d . s t a r t ( ) ;
104 }
105

106 p u b l i c v o i d r emoveHi tHand le r ( I H i t H a n d l e r h a n d l e r ) {
107 h i t H a n d l e r s . remove ( h a n d l e r ) ;
108 }
109

110 p u b l i c S t r i n g s t a r t ( f i n a l S t r i n g m f l F i l e P a t h , f i n a l Vector < S t r i n g >
pharmacophores ) throws S c r e e n i n g C l i e n t E x c e p t i o n {

111 S t r i n g i d = t h i s . g e t C l a s s ( ) . getSimpleName ( ) +"−"+System .
c u r r e n t T i m e M i l l i s ( ) ;

112 t r y {
113 p r e f s = new P r e f e r e n c e s ( l o c a l S c r e e n i n g C l i e n t s D i r +" / "+ i d ) ;
114 p r e f s . s t o r e P r e f e r e n c e ( FILE , m f l F i l e P a t h ) ;
115 p r e f s . s t o r e P r e f e r e n c e (PHA_INDEX , new I n t e g e r ( 0 ) . t o S t r i n g ( ) ) ;
116 p r e f s . s t o r e P r e f e r e n c e (MOL_INDEX, new I n t e g e r ( 1 ) . t o S t r i n g ( ) ) ;
117 p r e f s . s t o r e P r e f e r e n c e (PHAS, g e t P h a S t r i n g s ( pha rmacophores ) ) ;
118 } c a t c h ( IOExcep t ion e ) {
119 e . p r i n t S t a c k T r a c e ( ) ;
120 throw new S c r e e n i n g C l i e n t E x c e p t i o n ( e . ge tMessage ( ) ) ;
121 }
122 t h i s . m f l F i l e P a t h = m f l F i l e P a t h ;
123 t h i s . pha rmacophores = pharmacophores ;
124 t h i s . pha Index =0;
125 t h i s . molIndex =1;
126 s c r e e n i n g T h r e a d = new S c r e e n i n g T h r e a d ( ) ;
127 s c r e e n i n g T h r e a d . s t a r t ( ) ;
128 r e t u r n i d ;
129 }
130

131 p r i v a t e S t r i n g g e t P h a S t r i n g s ( Vector < S t r i n g > pharmacophores ) {
132 S t r i n g B u f f e r b u f f e r = new S t r i n g B u f f e r ( ) ;
133 boolean appendComma = f a l s e ;
134 f o r ( S t r i n g pha Id : pha rmacophores ) {
135 i f ( appendComma )
136 b u f f e r . append (SEPERATOR) ;



APPENDIX A. CODE SAMPLES 88

137 e l s e
138 appendComma= t r u e ;
139 b u f f e r . append ( pha Id ) ;
140 }
141 r e t u r n b u f f e r . t o S t r i n g ( ) ;
142 }
143

144 p r i v a t e Vector < S t r i n g > g e t P h a I d s ( S t r i n g p h a S t r i n g ) {
145 Vector < S t r i n g > p h a I d s = new Vector < S t r i n g > ( ) ;
146 f o r ( S t r i n g pha Id : p h a S t r i n g . s p l i t (SEPERATOR) )
147 p h a I d s . add ( pha Id ) ;
148 r e t u r n p h a I d s ;
149 }
150

151 p u b l i c v o i d s t o p ( ) {
152 s c r e e n i n g T h r e a d . s t o p T h r e a d ( ) ;
153 p r e f s . g e t F i l e ( ) . d e l e t e ( ) ;
154 }
155

156 p r i v a t e Pharmacophore impor tPha rmacophore ( S t r i n g pha rmacophore Id )
157 throws E x c e p t i o n {
158 t r y {
159 r e t u r n new DBPharmacophoreAccessor ( dbData )
160 . g e tPha rmacophore ( pha rmacophore Id ) ;
161 } c a t c h ( E x c e p t i o n e ) {
162 System . e r r . p r i n t l n ( " E r r o r i m p o r t i n g pharmacophore : "
163 + e . ge tMessage ( ) ) ;
164 e . p r i n t S t a c k T r a c e ( ) ;
165 throw e ;
166 }
167 }
168

169 p r i v a t e boo lean match ( Molecu le molecu le , Pharmacophore pharmacophore
)

170 throws E x c e p t i o n {
171 f o r ( i n t i =0 ; i < m o l e c u l e . ge tNumberOfConformat ions ( ) ; i ++) {
172 i f ( match ( molecu le , pharmacophore , i ) )
173 r e t u r n t r u e ;
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174 }
175 r e t u r n f a l s e ;
176 }
177

178 p r i v a t e boo lean match ( Molecu le molecu le , Pharmacophore pharmacophore
, i n t i n d e x )

179 throws E x c e p t i o n {
180 Al ignmentElement mo lecu l eAl ignmen tE lemen t ;
181 m o l e c u l e . s e t A c t i v e C o n f o r m a t i o n ( i n d e x ) ;
182 molecu l eAl ignmen tE lemen t = new Al ignmentElement ( m o l e c u l e ) ;
183 Al ignmentElement pha rmacophoreAl ignmentE lemen t = new

Al ignmentElement ( pharmacophore ) ;
184 Alignment a l i g n m e n t = new Alignment ( molecu leAl ignmen tE lemen t ,
185 pharmacophoreAl ignmentElement , AlignmentMode . ALIGN_BY_FEATURES

) ;
186 a l i g n m e n t . a l i g n ( ) ;
187

188 r e t u r n a l i g n m e n t . h a s S o l u t i o n s ( ) ;
189 }
190 }

A.1.3 IHitHandler

1 p u b l i c i n t e r f a c e I H i t H a n d l e r {
2 p u b l i c v o i d p r o g r e s s U p d a t e ( P r o g r e s s p r o g r e s s ) ;
3 p u b l i c v o i d r e s u l t R e c e i v e d ( S c r e e n i n g W o r k R e s u l t D a t a r e s u l t ) ;
4 }
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A.2 Layout Algorithm of the Target View

The layout algorithm of the Target View is implemented in the TargetMap class. The entry point
for the algorithm is the method: initClusters(). The following code snippet shows an extract of
the TargetMap class.

1 p u b l i c c l a s s TargetsMap implements G L E v e n t L i s t e n e r {
2

3 p r i v a t e H a s h t a b l e < S t r i n g , C l u s t e r > a t t r i b u t e 2 c l u s t e r ;
4

5 p r i v a t e H a s h t a b l e < S t r i n g , C l u s t e r P o s i t i o n > c l u s t e r P o s i t i o n s ;
6

7 p r i v a t e i n t s i z e ;
8

9 p r i v a t e doub le z ;
10

11 p r i v a t e i n t c l u s t e r P e r R o w ;
12

13 p u b l i c v o i d i n i t C l u s t e r s ( ) {
14 i n t f i e l d s P e r C o l u m n , f i e l d sP e r Ro w , f i e l d s P e r R o w C l u s t e r ;
15 Vector < C l u s t e r > c l u s t e r s = g e t S o r t e d C l u s t e r s ( a t t r i b u t e 2 c l u s t e r .

v a l u e s ( ) ) ;
16

17 f i e l d s P e r C o l u m n = f i e l d s P e r R o w =( i n t ) Math . s q r t ( s i z e ) ;
18 do {
19 f i e l d s P e r C o l u m n =++ f i e l d s P e r R o w ;
20

21 f i e l d s P e r R o w C l u s t e r = ( i n t ) ( f i e l d s P e r R o w / ( double ) c l u s t e r s .
s i z e ( ) ) ;

22 w h i l e ( c l u s t e r s . f i r s t E l e m e n t ( ) . g e t F i e l d s A m o u n t ( ) / ( double )
f i e l d s P e r R o w C l u s t e r > f i e l d s P e r C o l u m n ) {

23 f i e l d s P e r R o w C l u s t e r ++;
24 }
25

26 c l u s t e r P e r R o w = ( i n t ) ( f i e l d s P e r R o w / ( double )
f i e l d s P e r R o w C l u s t e r ) ;

27 } w h i l e ( ! c a l c u l a t e C l u s t e r P o s i t i o n s ( f i e l d sP e rR ow , f i e l d s P e r C o l u m n ,
f i e l d s P e r R o w C l u s t e r , c l u s t e r s ) ) ;

28
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29 double f i e l d W i d t h = c a l c u l a t e F i e l d W i d t h ( f i e l d s P e r R o w C l u s t e r ) ;
30 double f i e l d H e i g h t = c a l c u l a t e F i e l d H e i g h t ( f i e l d s P e r C o l u m n ) ;
31 double [ ] xValues = c a l c u l a t e C l u s t e r X V a l u e s ( f i e l d W i d t h ,

f i e l d s P e r R o w C l u s t e r ) ;
32 double [ ] yValues = i n i t C l u s t e r Y V a l u e s ( f i e l d H e i g h t ) ;
33 f o r ( C l u s t e r c l u s t e r : c l u s t e r s ) {
34 C l u s t e r P o s i t i o n p o s i t i o n = c l u s t e r P o s i t i o n s . g e t ( c l u s t e r .

g e t A t t r i b u t e ( ) . g e t I d ( ) ) ;
35 double x = xValues [ p o s i t i o n . g e t C o l ( ) ] ;
36 double y = yValues [ p o s i t i o n . g e t C o l ( ) ] ;
37 c l u s t e r . i n i t F i e l d s ( new C l u s t e r D a t a ( x , y , z , f i e l d W i d t h , f i e l d H e i g h t ,

f i e l d s P e r R o w C l u s t e r ) ) ;
38 double c l u s t e r H e i g h t = 1+ c l u s t e r . g e t F i e l d s A m o u n t ( ) / ( double )

f i e l d s P e r R o w C l u s t e r ;
39 yValues [ p o s i t i o n . g e t C o l ( ) ] −= c l u s t e r H e i g h t ∗ f i e l d H e i g h t ;
40 }
41 }
42

43 p r i v a t e boo lean c a l c u l a t e C l u s t e r P o s i t i o n s ( i n t f i e l d s Pe r Ro w , i n t
f i e l d s P e r C o l u m n , i n t f i e l d s P e r R o w C l u s t e r , Vector < C l u s t e r > c l u s t e r s
) {

44 c l u s t e r P o s i t i o n s = new H a s h t a b l e < S t r i n g , C l u s t e r P o s i t i o n > ( ) ;
45

46 i n t [ ] co lumnRemain ingHeigh t s = i n i t C o l u m n R e m a i n i n g H e i g h t s (
c l u s t e r P e r R o w , f i e l d s P e r C o l u m n ) ;

47 HashSet < S t r i n g > p l a c e d C l u s t e r I d s = new HashSet < S t r i n g > ( ) ;
48 f o r ( i n t row =0 , c o l =0; co l < co lumnRemain ingHeigh t s . l e n g t h ; c o l ++ , row

=0) {
49 i f ( c l u s t e r s . s i z e ( ) == p l a c e d C l u s t e r I d s . s i z e ( ) ) {
50 c l u s t e r P e r R o w = c o l ;
51 break ;
52 } e l s e i f ( co lumnRemain ingHeigh t s [ c o l ] < g e t C l u s t e r H e i g h t ( c l u s t e r s .

l a s t E l e m e n t ( ) , f i e l d s P e r R o w C l u s t e r ) ) {
53 c o n t i n u e ;
54 }
55 f o r ( C l u s t e r c l u s t e r : c l u s t e r s ) {
56 i f ( p l a c e d C l u s t e r I d s . c o n t a i n s ( c l u s t e r . g e t A t t r i b u t e ( ) . g e t I d ( ) ) )
57 c o n t i n u e ;
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58

59 double c l u s t e r H e i g h t = g e t C l u s t e r H e i g h t ( c l u s t e r ,
f i e l d s P e r R o w C l u s t e r ) ;

60 i f ( co lumnRemain ingHeigh t s [ c o l ] >= c l u s t e r H e i g h t ) {
61 c l u s t e r P o s i t i o n s . p u t ( c l u s t e r . g e t A t t r i b u t e ( ) . g e t I d ( ) , new

C l u s t e r P o s i t i o n ( co l , row ++) ) ;
62 p l a c e d C l u s t e r I d s . add ( c l u s t e r . g e t A t t r i b u t e ( ) . g e t I d ( ) ) ;
63 co lumnRemain ingHeigh t s [ c o l ] −= c l u s t e r H e i g h t ;
64 }
65 }
66 }
67

68 i f ( c l u s t e r s . s i z e ( ) != p l a c e d C l u s t e r I d s . s i z e ( ) )
69 r e t u r n f a l s e ;
70 r e t u r n t r u e ;
71 }
72

73 p r i v a t e doub le c a l c u l a t e F i e l d W i d t h ( i n t f i e l d s P e r R o w C l u s t e r ) {
74 r e t u r n ( wid th / ( double ) h e i g h t ) ∗ ( 1 / ( double ) ( f i e l d s P e r R o w C l u s t e r ∗

c l u s t e r P e r R o w + c l u s t e r P e r R o w −1) ) ;
75 }
76

77 p r i v a t e boo lean c a l c u l a t e C l u s t e r P o s i t i o n s ( i n t f i e l d s Pe r Ro w , i n t
f i e l d s P e r C o l u m n , i n t f i e l d s P e r R o w C l u s t e r , Vector < C l u s t e r > c l u s t e r s
) {

78 c l u s t e r P o s i t i o n s = new H a s h t a b l e < S t r i n g , C l u s t e r P o s i t i o n > ( ) ;
79

80 i n t [ ] co lumnRemain ingHeigh t s = i n i t C o l u m n R e m a i n i n g H e i g h t s (
c l u s t e r P e r R o w , f i e l d s P e r C o l u m n ) ;

81 HashSet < S t r i n g > p l a c e d C l u s t e r I d s = new HashSet < S t r i n g > ( ) ;
82 f o r ( i n t row =0 , c o l =0; co l < co lumnRemain ingHeigh t s . l e n g t h ; c o l ++ , row

=0) {
83 i f ( c l u s t e r s . s i z e ( ) == p l a c e d C l u s t e r I d s . s i z e ( ) ) {
84 c l u s t e r P e r R o w = c o l ;
85 break ;
86 } e l s e i f ( co lumnRemain ingHeigh t s [ c o l ] < g e t C l u s t e r H e i g h t ( c l u s t e r s .

l a s t E l e m e n t ( ) , f i e l d s P e r R o w C l u s t e r ) ) {
87 c o n t i n u e ;
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88 }
89 f o r ( C l u s t e r c l u s t e r : c l u s t e r s ) {
90 i f ( p l a c e d C l u s t e r I d s . c o n t a i n s ( c l u s t e r . g e t A t t r i b u t e ( ) . g e t I d ( ) ) )
91 c o n t i n u e ;
92

93 double c l u s t e r H e i g h t = g e t C l u s t e r H e i g h t ( c l u s t e r ,
f i e l d s P e r R o w C l u s t e r ) ;

94 i f ( co lumnRemain ingHeigh t s [ c o l ] >= c l u s t e r H e i g h t ) {
95 c l u s t e r P o s i t i o n s . p u t ( c l u s t e r . g e t A t t r i b u t e ( ) . g e t I d ( ) , new

C l u s t e r P o s i t i o n ( co l , row ++) ) ;
96 p l a c e d C l u s t e r I d s . add ( c l u s t e r . g e t A t t r i b u t e ( ) . g e t I d ( ) ) ;
97 co lumnRemain ingHeigh t s [ c o l ] −= c l u s t e r H e i g h t ;
98 }
99 }

100 }
101

102 i f ( c l u s t e r s . s i z e ( ) != p l a c e d C l u s t e r I d s . s i z e ( ) )
103 r e t u r n f a l s e ;
104 r e t u r n t r u e ;
105 }
106

107 p r i v a t e doub le g e t C l u s t e r H e i g h t ( C l u s t e r c l u s t e r , i n t
f i e l d s P e r R o w C l u s t e r ) {

108 r e t u r n 1+ c l u s t e r . g e t F i e l d s A m o u n t ( ) / ( double ) f i e l d s P e r R o w C l u s t e r ; / /
TODO f r e e s p a c e i n s t e a d o f "1+"

109 }
110

111 p r i v a t e doub le [ ] c a l c u l a t e C l u s t e r X V a l u e s ( double f i e l d W i d t h , i n t
f i e l d s P e r R o w C l u s t e r ) {

112 double [ ] xValues = new double [ c l u s t e r P e r R o w ] ;
113 double x= f i e l d W i d t h / 2 d ;
114 f o r ( i n t i =0 ; i < c l u s t e r P e r R o w ; i ++) {
115 xValues [ i ]= x ;
116 x +=(1+ f i e l d s P e r R o w C l u s t e r ) ∗ f i e l d W i d t h ;
117 }
118 r e t u r n xValues ;
119 }
120
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121 p r i v a t e doub le c a l c u l a t e F i e l d H e i g h t ( i n t f i e l d s P e r C o l u m n ) {
122 r e t u r n 1 / ( double ) f i e l d s P e r C o l u m n ;
123 }
124

125 p r i v a t e doub le [ ] i n i t C l u s t e r Y V a l u e s ( double f i e l d H e i g h t ) {
126 double [ ] yValues = new double [ c l u s t e r P e r R o w ] ;
127 f o r ( i n t i =0 ; i < c l u s t e r P e r R o w ; i ++) {
128 yValues [ i ]=− f i e l d H e i g h t / 2 d ;
129 }
130 r e t u r n yValues ;
131 }
132

133 p r i v a t e i n t [ ] i n i t C o l u m n R e m a i n i n g H e i g h t s ( i n t c l u s t e r P e r R o w , i n t
f i e l d s P e r C o l u m n ) {

134 i n t [ ] co lumnRemain ingHeigh t s = new i n t [ c l u s t e r P e r R o w ] ;
135 f o r ( i n t i = 0 ; i < c l u s t e r P e r R o w ; i ++) {
136 co lumnRemain ingHeigh t s [ i ] = f i e l d s P e r C o l u m n ;
137 }
138 r e t u r n co lumnRemain ingHeigh t s ;
139 }
140 }
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A.3 Import and Export

This section provides the source code of interfaces used for data import and export.

A.3.1 IMoleculesImport

1 p u b l i c i n t e r f a c e I M o l e c u l e s I m p o r t {
2 p u b l i c H a s h t a b l e < S t r i n g , AptMolecule > l o a d M o l e c u l e s ( ) throws

I m p o r t E x c e p t i o n ;
3 }

A.3.2 IPharmacophoresImport

1 p u b l i c i n t e r f a c e I P h a r m a c o p h o r e s I m p o r t {
2 p u b l i c H a s h t a b l e < S t r i n g , AptPharmacophore > l o a d A l l P h a r m a c o p h o r e s ( )

throws I m p o r t E x c e p t i o n ;
3 p u b l i c H a s h t a b l e < S t r i n g , AptPharmacophore > l o a d P h a r m a c o p h o r e s (

C o l l e c t i o n < AptTarge t > t a r g e t s ) throws I m p o r t E x c e p t i o n ;
4 }

A.3.3 ISessionImport

1 p u b l i c i n t e r f a c e I S e s s i o n I m p o r t {
2 p u b l i c S e s s i o n I n f o l o a d S e s s i o n ( ) throws I m p o r t E x c e p t i o n ;
3 }

A.3.4 ITargetImport

1 p u b l i c i n t e r f a c e I T a r g e t s I m p o r t {
2 p u b l i c H a s h t a b l e < S t r i n g , AptTarge t > l o a d T a r g e t s ( ) throws

I m p o r t E x c e p t i o n ;
3 }
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A.3.5 IHitExport

1 p u b l i c i n t e r f a c e I H i t E x p o r t {
2 p u b l i c v o i d s a v e H i t ( AptHi t h i t ) throws E x p o r t E x c e p t i o n ;
3 }

A.3.6 IMoleculeExport

1 p u b l i c i n t e r f a c e I M o l e c u l e E x p o r t {
2 p u b l i c v o i d s a v e M o l e c u l e s ( H a s h t a b l e < S t r i n g , AptMolecule > mols )

throws E x p o r t E x c e p t i o n ;
3 }

A.3.7 IPharmacophoresExport

1 p u b l i c i n t e r f a c e I P h a r m a c o p h o r e s E x p o r t {
2 p u b l i c v o i d savePha rmacophore s ( H a s h t a b l e < S t r i n g , AptPharmacophore >

pharmacophores ) throws E x p o r t E x c e p t i o n ;
3 }

A.3.8 IProgressExport

1 p u b l i c i n t e r f a c e I P r o g r e s s E x p o r t {
2 p u b l i c v o i d p r o g r e s s U p d a t e ( P r o g r e s s p r o g r e s s ) throws E x p o r t E x c e p t i o n

;
3 }
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A.3.9 ISessionExport

1 p u b l i c i n t e r f a c e I S e s s i o n E x p o r t {
2 p u b l i c I S e s s i o n I d E x p o r t e r s a v e S e s s i o n ( H a s h t a b l e < S t r i n g , AptTarge t >

t a r g e t s ,
3 H a s h t a b l e < S t r i n g , AptPharmacophore > phas ) throws E x p o r t E x c e p t i o n

;
4

5 p u b l i c I H i t E x p o r t g e t H i t E x p o r t ( ) ;
6 }

A.3.10 ISessionIdExport

1 p u b l i c i n t e r f a c e I S e s s i o n I d E x p o r t e r {
2 p u b l i c v o i d s e t I d ( S t r i n g s e s s i o n I d ) throws E x p o r t E x c e p t i o n ;
3 }

A.3.11 ITargetsExport

1 p u b l i c i n t e r f a c e I T a r g e t s E x p o r t {
2 p u b l i c v o i d s a v e T a r g e t s ( H a s h t a b l e < S t r i n g , AptTarge t > t a r g e t s ) throws

E x p o r t E x c e p t i o n ;
3

4 }
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